Organic Letters
Letter
(21) Martin, R. H.; Baes, M. Tetrahedron 1975, 31, 2135.
(22) Collins, S. K.; Grandbois, A.; Vachon, M. P.; Cote,
Chem., Int. Ed. 2006, 45, 2923.
(23) Harrowven, D. C.; Guy, I. L.; Nanson, L. Angew. Chem., Int. Ed.
2006, 45, 2242.
By removing the orbital degeneracy, the photoreactivity was
successfully controlled. Moreover, in combination with the
Knoevenagel reaction, a one-pot synthesis of 5,10-dicyano[5]-
helicene in 67% yield from terephthalaldehyde and benzyl
cyanide was accomplished.
̂
́
J. Angew.
(24) Kamikawa, K.; Takemoto, I.; Takemoto, S.; Matsuzaka, H. J.
Org. Chem. 2007, 72, 7406.
(25) Hernandez-Perez, A. C.; Vlassova, A.; Collins, S. K. Org. Lett.
2012, 14, 2988.
(26) Liu, L.; Katz, T. J. Tetrahedron Lett. 1991, 32, 6831.
(27) Frimer, A. A.; Kinder, J. D.; Youngs, W. J.; Meador, M. A. B. J.
Org. Chem. 1995, 60, 1658.
(28) Yamabe, T.; Nakamura, K.; Shiota, Y.; Yoshizawa, K.; Kawauchi,
S.; Ishikawa, M. J. Am. Chem. Soc. 1997, 119, 807.
(29) Yamabe, S.; Nishihara, Y.; Minato, T. J. Phys. Chem. A 2002,
106, 4980.
ASSOCIATED CONTENT
* Supporting Information
Experimental details, 1H and 13C NMR spectra, Cartesian
coordinates of the optimized structures, and the calculated
excited states. This material is available free of charge via the
■
S
AUTHOR INFORMATION
Corresponding Author
■
(30) Scholz et al. obtained benzo[ghi]perylene in 11.5% yield by the
photolysis of 1,4-distyrylbenzene. See: Dietz, F.; Scholz, M.
Tetrahedron 1968, 24, 6845. Katz et al. obtained it in 33% yield
(ref 26). We have obtained it in 16% yield.
Notes
(31) Cis−trans isomerization of the double bond is a reversible
process, while photocyclodehydrogenation from the cis isomer is not.
The reaction therefore proceeds to the annulated product regardless of
cis−trans isomerization upon continuous photoirradiation.
(32) Adamo, C.; Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845 and
references therein.
(33) Frisch, M. J. et al. Gaussian 09, Revision B.01; Gaussian, Inc.:
Wallingford, CT, 2009. See the Supporting Information for the full
reference.
(34) Bao, J.; Minitti, M. P.; Weber, P. M. J. Phys. Chem. A 2011, 115,
1508.
(35) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Chapter 6: A
Theory of Molecular Organic Photochemistry. Principles of Molecular
Photochemistry An Introduction; University Science Books: Sausalito,
CA, 2009; pp 319−382.
(36) There are also two nearly degenerate high-lying occupied MOs,
which have opposite symmetry; therefore, the conrotatory thermal
cyclization is allowed. Scott et al. reported the thermal cyclization of
[5]helicene by flash vacuum pyrolysis: Xue, X.; Scott, L. T. Org. Lett.
2007, 9, 3937.
(37) The small substituent effect by the methoxy group alters the
order of the frontier orbitals; therefore, the HOMO to LUMO
transition in compound 2a corresponds to the HOMO−1 to LUMO
+1 transition in compound 2b.
(38) Bazzini, C.; Brovelli, S.; Caronna, T.; Gambarotti, C.; Giannone,
M.; Macchi, P.; Meinardi, F.; Mele, A.; Panzeri, W.; Recupero, F.;
Sironi, A.; Tubino, R. Eur. J. Org. Chem. 2005, 1247.
(39) Katz et al. reported in ref 7 that the reactivity was controlled by
the steric repulsion of the bromo substituents close to the reactive
position. Calculation results on these compounds are described in the
Supporting Information.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the NEXT program (No. GR062)
from the Japan Society for the Promotion of Science (JSPS),
Japan.
REFERENCES
(1) Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463.
(2) Gingras, M. Chem. Soc. Rev. 2013, 42, 968.
■
(3) Gingras, M.; Fel
1007.
́
ix, G.; Peresutti, R. Chem. Soc. Rev. 2013, 42,
(4) Gingras, M. Chem. Soc. Rev. 2013, 42, 1051.
(5) Urbano, A. Angew. Chem., Int. Ed. 2003, 42, 3986.
(6) Fox, J. M.; Katz, T. J.; Van Elshocht, S.; Verbiest, T.; Kauranen,
M.; Persoons, A.; Thongpanchang, T.; Krauss, T.; Brus, L. J. Am.
Chem. Soc. 1999, 121, 3453.
(7) Norsten, T. B.; Peters, A.; McDonald, R.; Wang, M.; Branda, N.
R. J. Am. Chem. Soc. 2001, 123, 7447.
(8) Field, J. E.; Muller, G.; Riehl, J. P.; Venkataraman, D. J. Am.
Chem. Soc. 2003, 125, 11808.
(9) Hassey, R.; Swain, E. J.; Hammer, N. I.; Venkataraman, D.;
Barnes, M. D. Science 2006, 314, 1437.
(10) Furche, F.; Ahlrichs, R.; Wachsmann, C.; Weber, E.; Sobanski,
A.; Vogtle, F.; Grimme, S. J. Am. Chem. Soc. 2000, 122, 1717.
̈
(11) Nakai, Y.; Mori, T.; Inoue, Y. J. Phys. Chem. A 2012, 116, 7372.
(12) Verbiest, T.; Van Elshocht, S.; Kauranen, M.; Hellemans, L.;
Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A. Science 1998, 282,
913.
(13) Nuckolls, C.; Katz, T. J.; Katz, G.; Collings, P. J.; Castellanos, L.
J. Am. Chem. Soc. 1999, 121, 79.
(14) Phillips, K. E. S.; Katz, T. J.; Jockusch, S.; Lovinger, A. J.; Turro,
(40) Chen, J.-D.; Lu, H.-Y.; Chen, C.-F. Chem.Eur. J. 2010, 16,
11843.
(41) Irie, M. Chem. Rev. 2000, 100, 1685.
(42) Yokoyama, Y. Chem. Rev. 2000, 100, 1717.
(43) Matsuda, K.; Irie, M. Chem. Lett. 2006, 35, 1204.
N. J. J. Am. Chem. Soc. 2001, 123, 11899.
(15) Shinohara, K.-i.; Sannohe, Y.; Kaieda, S.; Tanaka, K.; Osuga, H.;
Tahara, H.; Xu, Y.; Kawase, T.; Bando, T.; Sugiyama, H. J. Am. Chem.
Soc. 2010, 132, 3778.
(16) Kaseyama, T.; Furumi, S.; Zhang, X.; Tanaka, K.; Takeuchi, M.
Angew. Chem., Int. Ed. 2011, 50, 3684.
(17) Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.; Nozaki, K.
Angew. Chem., Int. Ed. 2012, 51, 695.
̌
(18) Sehnal, P.; Stara,
J.; Rulísek, L.; Chocholouso
Císarova, I.; Stary, I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 13169.
́
I. G.; Saman, D.; Tichy, M.; Míse
̌ ́
̌
k, J.; Cvack
̌
a,
́
̌
va, J.; Vacek, J.; Goryl, G.; Szymonski, M.;
̌
́
́
(19) Balandina, T.; van der Meijden, M. W.; Ivasenko, O.; Cornil, D.;
Cornil, J.; Lazzaroni, R.; Kellogg, R. M.; De Feyter, S. Chem. Commun.
2013, 49, 2207.
(20) Seibel, J.; Allemann, O.; Siegel, J. S.; Ernst, K.-H. J. Am. Chem.
Soc. 2013, 135, 7434.
2505
dx.doi.org/10.1021/ol5008718 | Org. Lett. 2014, 16, 2502−2505