ACS Medicinal Chemistry Letters
Page 6 of 7
(8) Fioravanti, J.; Medina-Echeverz, J.; Berraondo, P. Scav- (20) Nieland, T. J.; Shaw, J. T.; Jaipuri, F. A.; Maliga, Z.;
1
2
enger receptor type B, class I: A promising immunotherapy
Duffner, J. L.; Koehler, A. N.; Krieger, M. J. Lipid Res.
2007, 48, 1832–1845.
target. Immunotherapy, 2011, 3, 395–406.
3
4
5
6
7
8
9
(9) Guo, L.; Song, Z.; Li, M.; Wu, Q.; Wang, D.; Feng, H.;
Bernard, P.; Daugherty, A.; Huang, B.; Li, X. A. Scavenger
receptor BI protects against septic death through its role in
modulating inflammatory response. J. Biol. Chem. 2009,
284, 19826–19834.
(21) Nishizawa, T.; Kitayama, K.; Wakabayashi, K.; Yama-
da, M.; Uchiyama, M.; Abe, K.; Ubukata, N.; Inaba, T.; Oda,
T.; Amemiya, Y. A novel compound, R-138329, increases
plasma HDL cholesterol via inhibition of scavenger receptor
BI- mediated selective lipid uptake. Atherosclerosis 2007,
194, 300–308.
(10) Zhu, P.; Liu, X.; Treml, L. S.; Cancro, M. P.; Freedman,
B. D. Mechanism and regulatory function of CpG signaling
via scavenger receptor B1 in primary B cells. J. Biol. Chem.
2009, 284, 22878–22887.
(22) Syder, A. J.; Lee, H.; Zeisel, M. B.; Grove, J.; Soulier,
E.; Macdonald, J.; Chow, S.; Chang, J.; Baumert, T. F.;
McKeating, J. A.; McKelvy, J.; Wong-Staal, F. Small mole-
cule scavenger receptor BI antagonists are potent HCV entry
inhibitors. J. Hepatol. 2011, 54, 48–55.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) Voisset, C.; Callens, N.; Blanchard, E.; Op De Beeck,
A.; Dubuisson, J.; Vu-Dac, N. High density lipoproteins
facilitate hepatitis C virus entry through the scavenger recep-
tor class B type I. J. Biol. Chem. 2005, 280, 7793–7799.
(23) Zhu, H.; Wong-Staal, F.; Lee, H.; Syder, A.; McKelvy,
J.; Schooley, R. T.; Wyles, D. L. Evaluation of ITX 5061, a
scavenger receptor B1 antagonist: resistance selection and
activity in combination with other hepatitis C virus antivi-
rals. J. Infect. Dis. 2012, 205, 656-62.
(12) Catanese, M. T.; Graziani, R.; von Hahn, T.; Moreau,
M.; Huby, T.; Paonessa, G.; Santini, C.; Luzzago, A.; Rice,
C. M.; Cortese, R.; Vitelli, A.; Nicosia, A. High-avidity
monoclonal antibodies against the human scavenger class B
type I receptor efficiently block hepatitis C virus infection in
the presence of high-density lipoprotein. J. Virol. 2007, 81,
8063–71.
(24) Sulkowski, M. S.; Kang, M.; Matining, R.; Wyles, D.;
Johnson, V. A.; Morse, G. D.; Amorosa, V.; Bhattacharya,
D.; Coughlin, K.; Wong-Staal, F.; Glesby, M. J. Safety and
antiviral activity of the HCV entry inhibitor ITX5061 in
treatment-naive HCV infected adults: A randomized, double-
blind, Phase 1b study. J. Infect. Dis. 2014, 209, 658–667.
(13) Catanese, M. T.; Ansuini, H.; Graziani, R.; Huby, T.;
Moreau, M.; Ball, J. K.; Paonessa, G.; Rice, C. M.; Cortese,
R.; Vitelli, A.; Nicosia, A. Role of scavenger receptor class
B type I in hepatitis C virus entry: kinetics and molecular
determinants. J. Virol. 2010, 84, 34–43.
(25) Researchers at iTherX recently reported the structure of
the HCV entry inhibitor ITX 4520, which is postulated to act
as an inhibitor of SR-BI: Mittapalli, G. K.; Zhao, F.; Jack-
son, A.; Gao, H.; Lee, H.; Chow, S.; Pal Kaur, M.; Nguyen,
N.; Zamboni, R.; McKelvy, J.; Wong-Staal, F.; Macdonald,
J. E. Discovery of ITX 4520: A highly potent orally bioa-
vailable hepatitis C virus entry inhibitor. Bioorg. Med.
Chem. Lett. 2012, 22, 4955–4961.
(14) Papale, G. A.; Hanson, P. J.; Sahoo, D. Extracellular
disulfide bonds support scavenger receptor Class B Type I-
mediated cholesterol transport. Biochemistry 2011, 50,
6245–6254.
(15) Gaidukov, L.; Nager, A. R.; Xu, S.; Penman, M.; Krieg-
er, M. Glycine dimerization motif in the N-terminal trans-
membrane domain of the high density lipoprotein receptor
SR-B1 required for normal receptor oligomerization and
lipid transport. J. Biol. Chem. 2011, 286, 18452–18464.
(26) See Supporting Information for details.
(accessed March 1, 2014).
(28) 5-1 was active in 5 assays not involving SR-B1 out of
315 bioassays listed on December 10, 2011.
(16) Yu, M.; Lau, T. Y.; Carr, S. A.; Krieger, M. Contribu-
tions of a disulfide bond and a reduced cysteine side chain to
the intrinsic activity of the high-density lipoprotein receptor
SR-BI Biochemistry 2012, 51, 10044–10055.
(29) Kalgutkar, A. S.; Gardner, I.; Obach, R. S.; Shaffer, C.
L.; Callegari, E.; Henne, K. R.; Mutlib, A. E.; Dalvie, D. K.;
Lee, J. S.; Nakai, Y.; O’Donnell, J. P.; Boer, J.; Harriman, S.
P. A comprehensive listing of bioactivation pathways of
organic functional groups. Current Drug Metabolism 2005,
6, 161–225.
(17) During the preparation of this manuscript, the x-ray
crystal structure of LIMP-2 was determined, a pattern-
recognition recognition receptor in the same CD36 super-
family as SR-BI: Neculai, D.; Schwake, M.; Ravichandran,
M.; Zunke, F.; Collins, R. F.; Peters, J.; Neculai, M.; Plumb,
J.; Loppnau, P.; Pizarro, J.-C.; Seitova, A.; Trimble, W. S.;
Saftig, P.; Grinstein, S.; Dhe-Paganon, S. Structure of LIMP-
2 provides functional insights with implications for SR-BI
and CD36. Nature 2013, 504, 172–176.
(30) Stepan, A. F.; Walker, D. P.; Bauman, J.; Price, D. A.;
Baillie, T. A.; Kalgutkar, A. S.; Aleo, M. D. Structural
alert/reactive metabolite concept as applied in medicinal
chemistry to mitigate the risk of idiosyncratic drug toxicity:
a perspective based on the critical examination of trends in
the top 200 drugs marketed in the United States. Chem. Res.
Toxicol. 2011, 24, 1345–1410.
(18) Nieland T. J.; Penman, M.; Dori, L.; Krieger, M.;
Kirchhausen, T. Discovery of chemical inhibitors of the se-
lective transfer of lipids mediated by the HDL receptor SR-
BI. Proc. Nat. Acad. Sci. USA 2002, 99, 15422–15427.
(31) Measured with a CellTiter-Glo assay (Promega) to de-
termine cellular ATP levels.
(32) Zhang, J.-H.; Chung, T. D. Y.; Oldenburg, K. R. A sim-
ple statistical parameter for use in evaluation and validation
of high throughput screening assays J. Biomol. Screen 1999,
4, 67–73.
(19) Coppola, G. M.; Damon, R. E.; Eskesen, B.; France, D.
S.; Paterniti, J. R. Biological evaluation of 1-alkyl-3-
phenylthioureas as orally active HDL-elevating agents.
Bioorg. Med. Chem. Lett. 2006, 16, 113–117.
ACS Paragon Plus Environment