Beilstein J. Org. Chem. 2018, 14, 2259–2265.
7. Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.;
Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2009, 131,
methyl sulfate (6c) to form the hydropyridylation product 4l in
66% yield and as a 4.7:1 ratio of regioisomers (Table 1,
entry 13). We also demonstrated that the alkyl radical
generated from the HAT process can be trapped by (η6-
benzene)manganese tricarbonyl hexafluorophosphate (6d) to
provide the reductive coupling product 4m in 50% yield
8. Leggans, E. K.; Barker, T. J.; Duncan, K. K.; Boger, D. L. Org. Lett.
9. Ma, X.; Herzon, S. B. J. Org. Chem. 2016, 81, 8673–8695.
10.Girijavallabhan, V.; Alvarez, C.; Njoroge, F. G. J. Org. Chem. 2011, 76,
11.Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47,
Conclusion
In summary, we have demonstrated that under a consistent set
of conditions, the Co(acac)2–TBHP–Et3SiH system effects a
diverse array of Markovnikov-selective hydrofunctionalization
reactions of unactivated alkenes (H–X addition, X = H, F, Cl,
Br, I, O, S, Se, N, and C). We have also reported the first reduc-
tive coupling reactions of alkenes and aryldiazonium salts under
HAT conditions. These transformations proceed in high regio-
selectivity and efficiency. Further efforts will focus on
expanding the alkene scope and exploring the site-selectivity in
polyene substrates.
12.Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134,
13.Shigehisa, H.; Nishi, E.; Fujisawa, M.; Hiroya, K. Org. Lett. 2013, 15,
14.Kato, K.; Mukaiyama, T. Chem. Lett. 1992, 21, 1137–1140.
15.Waser, J.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 5676–5677.
16.Waser, J.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127,
17.Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.;
Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.;
Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Science 2015, 348,
Supporting Information
18.Eisenberg, D. C.; Norton, J. R. Isr. J. Chem. 1991, 31, 55–66.
Supporting Information File 1
Detailed experimental procedures and characterization data
for all new compounds.
19.Gansäuer, A.; Shi, L.; Otte, M.; Huth, I.; Rosales, A.; Sancho-Sanz, I.;
Padial, N. M.; Oltra, J. E. Hydrogen Atom Donors: Recent
Developments. In Radicals in Synthesis III; Heinrich, M.; Gansäuer, A.,
Eds.; Topics in Current Chemistry; Springer: Berlin Heidelberg, 2012.
20.Hoffmann, R. W. Chem. Soc. Rev. 2016, 45, 577–583.
21.Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A.
22.Choi, J.; Tang, L.; Norton, J. R. J. Am. Chem. Soc. 2007, 129,
Acknowledgements
Financial support from the National Science Foundation (CHE-
1151563) is gratefully acknowledged.
23.Choi, J.; Pulling, M. E.; Smith, D. M.; Norton, J. R. J. Am. Chem. Soc.
ORCID® iDs
24.Li, G.; Han, A.; Pulling, M. E.; Estes, D. P.; Norton, J. R.
25.Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136,
References
1. Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.;
Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 1300–1303.
26.Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Nature 2014, 516,
27.Kuo, J. L.; Hartung, J.; Han, A.; Norton, J. R. J. Am. Chem. Soc. 2015,
28.Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.;
Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S.
29.Dao, H. T.; Li, C.; Michaudel, Q.; Maxwell, B. D.; Baran, P. S.
30.Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014,
2. King, S. M.; Ma, X.; Herzon, S. B. J. Am. Chem. Soc. 2014, 136,
3. Ma, X.; Herzon, S. B. Chem. Sci. 2015, 6, 6250–6255.
4. Obradors, C.; Martinez, R. M.; Shenvi, R. A. J. Am. Chem. Soc. 2016,
5. Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 18, 573–576.
31.Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46,
6. Ishikawa, H.; Colby, D. A.; Boger, D. L. J. Am. Chem. Soc. 2008, 130,
32.Gaspar, B.; Carreira, E. M. J. Am. Chem. Soc. 2009, 131,
2264