Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
2. (a) D. Magdziak, S. J. Meek and T. R. R. Pettus, Chem. Rev. 2004, 104,
A plausible mechanism for the metal-free acylation ipso-
cyclization was proposed based on the previous reports and
control experiments (Scheme 3).9 Homolytic cleavage of
persulfate under thermal condition produces the reactive
sulfate radical anion intermediate A. Single electron oxidation
of glyoxylic acid 2 by A generates acyl radical B after extrusion
of carbon dioxide. The acyl radical B reacts with the
propiolamide 1 generating the radical intermediate C, which on
ipso-spirocyclization would form intermediate D. The radical
intermediate D is oxidized by a second sulfate radical anion to
generate intermediate E. Nucleophilic attack of water and
subsequent hydrolysis of the hemiketal furnishes the acylated
azaspiro-[4,5]trienone 3 via the intermediate F.
DOI: 10.1039/D0CC04800C
L. Pouyse´gu, D. Deffieux and S. Quideau, Tetrahedron, 2010, 66, 2235;
(d) T. Dohi and Y. Kita, Chem. Commun., 2009, 2073; (e) S. Quideau, L.
Pouyse´gu and D. Deffieux, Synlett, 2008, 467.
3. (a) S. P. Roche and J. A. Porco Jr., Angew. Chem., Int. Ed., 2011, 50, 4068;
(b) T. Nemoto, Z. Zhao, T. Yokosaka, Y. Suzuki, R. Wu and Y. Hamada,
Angew. Chem., Int. Ed., 2013, 52, 2217; (c) S. Rousseaux, J. Garcı´a-
Fortanet, M. A. Del Aguila Sanchez and S. L. Buchwald, J. Am. Chem. Soc.,
2011, 133, 9282; (d) Q.-F. Wu, W.-B. Liu, C.-X. Zhuo, Z.-Q. Rong, K.-Y. Ye
and S.-L. You, Angew. Chem., Int. Ed., 2011, 50, 4455; (e) F. C. Pigge, J. J.
Coniglio and R. Dalvi, J. Am. Chem. Soc., 2006, 128, 3498; ( f ) S. Chiba,
L. Zhang and J.-Y. Lee, J. Am. Chem. Soc., 2010, 132, 7266; (g) Y. L. Tnay,
C. Chen, Y. Y. Chua, L. Zhang and S. Chiba, Org. Lett., 2012, 14, 3550; (h)
T. Nemoto, Y. Ishige, M. Yoshida, Y. Kohno, M. Kanematsu and Y.
Hamada, Org. Lett., 2010, 12, 5020.
4. (a) B. Crone, S. F. Kirsch and K.-D. Umland, Angew. Chem., Int. Ed., 2010,
49, 4661; (b) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil, Z. Huo and
Y. Yamamoto, J. Am. Chem. Soc., 2008, 130, 15720; (c) R. F. Schumacher,
A. R. Rosa´rio, A. C. G. Souza, P. H. Menezes and G. Zeni, Org. Lett., 2010,
12, 1952; (d) R. Thomas, A. Nasser, A. M. Yehia, U. Baumeister, H.
Hartung, R. Kluge, D. Stro¨hl and E. Fangha¨nel, Eur. J. Org. Chem., 2003,
47; (e) B. Godoi, R. F. Schumacher and G. Zeni, Chem. Rev., 2011, 111,
2937; ( f ) B.-X. Tang, Y.-H. Zhang, R.-J. Song, D.-J. Tang, G.-B. Deng, Z.-Q.
Wang, Y.-X. Xie, Y.-Z. Xia and J.-H. Li, J. Org. Chem., 2012, 77, 2837; (g)
X. Zhang and R. C. Larock, J. Am. Chem. Soc. 2005, 127, 12230.
5. For reviews on spirocyclization, see: (a) C. R. Reddy, S. K. Prajapati, K.
Warudikar, R. Ranjan and B. B. Rao, Org. Biomol. Chem. 2017, 15, 3130;
(b) W.-C. Yang, M.-M. Zhang and J.-G. Feng, Adv. Synth. Catal, 2020, Doi:
10.1002/adsc.202000636; For recent related works, see: (c) H. Cui, W.
Wei, D. Yang, J. Zhang, Z. Xu, J. Wen and H. Wang, RSC Adv., 2015, 5,
84657; (d) P.-C. Qian, Y. Liu, R.-J. Song, J.-N. Xiang and J.-H. Li, Synlett.,
2015, 26, 1213; (e) J. Wen, W. Wei, S. Xue, D. Yang, Y. Lou, C. Gao and
H. Wang, J. Org. Chem., 2015, 80, 4966; (f) H. Sahoo, A. Mandal, S. Dana
and M. Baidya, Adv. Synth. Catal., 2018, 360, 1099; (g) X.-H. Yang, X.-H.
Ouyang, W.-T. Wei, R.-J. Song and J.-H. Li, Adv. Synth. Catal., 2015, 357,
1161; (h) P. Gao, W. Zhang and Z. Zhang, Org. Lett., 2016, 18, 5820; (i)
L.-J. Wu, F.-L. Tan, M. Li, R.-J. Song and J.- H. Li, Org. Chem. Front., 2017,
4, 350; (j) H.-L. Hua, Y.-T. He, Y.-F. Qiu, Y.-X. Li, B. Song, P. Gao, X.-R.
Song, D.-H. Guo, X.-Y. Liu and Y.-M. Liang, Chem. Eur. J., 2015, 21, 1468;
(k) W.-T. Wei, R.-J. Song, X.-H. Ouyang, Y. Li, H.-B. Li and J.-H. Li, Org.
Chem. Front., 2014, 1, 484; (l) X.-H. Ouyang, R.-J. Song, B. Liu and J.-H.
Li, Chem. Commun., 2016, 52, 2573; (m) W. Wei, H.-H. Cui, D.-S. Yang,
H.-L. Yue, C.-L. He, Y.-L. Zhang and H. Wang, Green Chem., 2017, 19,
5608; (n) A. M. Nair, I. Halder, S. Khan and C. M. R. Volla, Adv. Synth.
Catal., 2020, 362, 224.
O
S
2-
Ph
O
SO4
MeO
Ph
O
O
MeO
O
Ar
O
+
O
A
O
1
Ar
N
Ar
N
O
Me
O
Me
C
B
OH
D
O
S
Ar
Spirocyclization
CO2
O
O
A
O
2
O
Generation of acyl radical
2-
SO4
MeO
O
Ph
O
Ph
MeO
H2O
Ph
HO
O
O
N
Ar
N
Ar
N
Ar
Me
O
Me
Me
O
O
3
F
E
Scheme 3. Proposed mechanism.
Conclusions
In summary, a simple and versatile strategy for furnishing a
wide variety of acylated azaspiro[4,5]-trienones from N-
arylpropiolamides and -oxocarboxylic acids has been
developed under operationally simple conditions. This
methodology offers a concise approach to this class of
molecules under metal-free conditions and requires
inexpensive and readily available K2S2O8 as oxidant. Additionally
complex tricyclic spirocycles were synthesized efficiently in a
single pot by extension of the protocol. Preliminary mechanistic
studies indicated that the cascade cyclization proceeds via a
radical pathway and the oxygen atom of the newly formed
carbonyl group originates from water.
6. F. Penteado, E. F. Lopes, D. Alves, G. Perin, R. G. Jacob and E. J. Lenardão,
Chem. Rev., 2019, 119, 7113.
7. (a) C. R. Reddy, R. C. Kajare and N. Punna, N. Chem. Commun. 2020, 56,
3445; (b) M. Meng, G. Wang, L. Yang, K. Cheng, and C. Qi, Adv. Synth.
Catal. 2018, 360, 1218; (c) W.-C. Yang, P. Dai, K. Luo, Y.-G. Ji, and L. Wu,
Adv. Synth. Catal. 2017, 359, 2390. (d) K. Yan, D. Yang, W. Wei, F. Wang,
Y. Shuai, Q .Li, and H. Wang, J. Org. Chem. 2015, 80, 1550. (e) T. Liu, Q.
Ding, Q. Zong and G. Qiu, Org. Chem. Front. 2015, 2, 670.
Conflicts of interest
There are no conflicts to declare.
8. S. Mandal, T. Bera, G. Dubey, J. Saha and J. K. Laha, ACS Catal., 2018, 8,
5085.
9. (a) H. Wang, L.-N. Guo, S. Wang and X.-H. Duan, Org. Lett., 2015, 17,
3054; (b) J. K. Laha and K. V. Patel, Chem. Commun., 2016, 52, 10245–
10248; (c) J. K. Laha, M. K. Hunjan, S. Hegde and A. Gupta, Org. Lett.,
2020, 22, 1442.
Acknowledgements
This activity is supported by Department of Science and Technology,
Government of India (TMD/CERI/BEE/2016/098). A.H.S. thanks IIT
Bombay and S.K. thanks University Grants Commission (U.G.C.) for
the fellowship.
10. During the submission of this manuscript, Reddy and co-workers
reported
a silver-catalyzed decarboxylative ipso-cyclization of N-
arylpropiolamides using glyoxylic acids: C. R. Reddy, D. H. Kolgave, M.
Subbarao, M. Aila and S. K. Prajapti, Org. Lett., 2020, 22, 5342.
11. (a) S. M. Weinreb, Chem. Rev., 2006, 106, 2531; (b) S. Dutta, H. Abe, S.
Aoyagi, C. Kibayashi and K. S. Gates, J. Am. Chem. Soc., 2005, 127, 15004;
(c) H. Abe, S. Aoyagi, and C. Kibayashi, J. Am. Chem. Soc., 2000, 122,
4583.
References
1. (a) Y. Yang, F. Chang and Y. Wu, Helv. Chim. Acta., 2004, 87, 1392; (b) E.
M. Antunes, B. R. Copp, M. T. Davies-Coleman, and T. Samaai, Nat. Prod.
Rep., 2005, 22, 62; (c) S. Rosenberg and R. Leino, Synthesis, 2009, 2651;
(d) E. Gravel, and E. Poupon, Nat. Prod. Rep., 2010, 27, 32; (e) Y.-S. Cai,
Y.-W. Guo, and K. Krohn, Nat. Prod. Rep., 2010, 27, 1840.
12. D. Yugandhar, S. Kuriakose, J. B. Nanubolu and A. K. Srivastava, Org. Lett.,
2016, 18, 1040.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins