polycyclic structure of palhinine A is architecturally un-
precedented in Lycopodium alkaloids, and its topological
molecular skeleton having five stereogenic centers, two of
which (C-4 and C-12) are quaternary, is characterized with
a functionalized isotwistane nucleus4À10 (rings B/C/D,
tricyclo[4.3.1.03,7]decane), providing an interesting and
challenging target for the synthetic community.
precursor8À10 is yet to be explored in the synthetic study
of palhinine A. Herein, we report our preliminary efforts
toward the expedient and straightforward access to the
densely functionalized isotwistane framework by using an
intramolecular DielsÀAlder strategy.8,9,13
Very recently, an elegant strategy for the stepwise con-
struction of therelatedisotwistane corehasbeendeveloped
by Xie, She et al.11 on the basis of tandem oxidative
dearomatization/intramolecular DielsÀAlder reaction
(rings C and D)12 and the later-stage 5-exo-trig radical
cyclization4 (ring B). However, the direct assembly of this
kind of functionalized isotwistane ring system with con-
tiguous quaternary stereocenters from a monocyclic
Scheme 1. Retrosynthetic Analysis of Palhinine A
(4) For selected examples on the construction of the isotwistane core
via 5-exo-trig radical cyclization from the bicyclo[2.2.2]octane system,
see: (a) Srikrishna, A.; Reddy, T. J. J. Chem. Soc., Perkin Trans. 1 1997,
3293. (b) Njardarson, J. T.; Wood, J. L. Org. Lett. 2001, 3, 2431. (c)
Matsushita, T.; Ashida, H.; Kimachi, T.; Takemoto, Y. Chem. Commun.
2002, 814. (d) Singh, V.; Pal, S.; Mobin, S. M. J. Org. Chem. 2006, 71,
3014 and ref 11.
(5) For selected examples on the construction of the isotwistane core
via carbenoid CÀH insertion from the bicyclo[2.2.2]octane system, see:
(a) Spiegel, D. A.; Njardarson, J. T.; Wood, J. L. Tetrahedron 2002, 58,
6545. (b) Srikrishna, A.; Satyanarayana, G. Tetrahedron 2005, 61, 8855.
(6) For selected examples on the construction of the isotwistane
core via Pinacol coupling from the bicyclo[2.2.2]octane system, see:
Yoshimitsu, T.; Sasaki, S.; Arano, Y.; Nagaoka, H. J. Org. Chem. 2004,
69, 9262.
(7) For selected examples on the construction of the isotwistane core
via intramolecular alkylation from the bicyclo[4.3.0]nonane system, see:
(a) Corey, E. J.; Behforouz, M.; Ishiguro, M. J. Am. Chem. Soc. 1979,
101, 1608. (b) Hsieh, S.-L.; Chiu, C.-T.; Chang, N.-C. J. Org. Chem.
1989, 54, 3820.
Retrosynthetically, the isotwistane A (Scheme 1)
constitutes the key building block for the synthesis of
palhinine A and its analogues. Logically, its nine-
membered azonane ring could be conceived by a pro-
tocol involving the hydroborationÀoxidation and amina-
tion from the synthon A1 or the chemoselective allylation,
olefinic oxidative cleavage, and amination from the
synthon A2. The crucial tricyclic core in A1 and A2
could be formally envisioned by intramolecular
DielsÀAlder cycloaddition of the rationally designed
B1 and B2, which could be properly derived from
the readily available substituted cyclohexenone C.
It should be noted that the key stereoselective intra-
molecular DielsÀAlder strategy proposed here would
synthetically rationalize the present disconnection,
providing an alternative consideration for the straight-
forward reestablishment of the isotwistane framework
of palhinine A as well as its structurally related mole-
cules. The proposed disconnection approach from the
bridged tricyclic core A2 to triene synthon B2 might be
more synthetically interesting due to the elaborated
installation of oxygen functional groups requisite for
the synthetic study of palhinine A.
(8) For selected examples on the construction of the isotwistane core
via an intramolecular DielsÀAlder reaction from the cyclohexadiene
system, see: (a) Yamamoto, H.; Sham, H. L. J. Am. Chem. Soc. 1979,
101, 1609. (b) Schiehser, G. A.; White, J. D. J. Org. Chem. 1980, 45, 1864.
(c) Magnus, P.; Brown, P. J. Chem. Soc., Chem. Commun. 1985, 184. (d)
Takasu, K.; Mizutani, S.; Ihara, M. J. Org. Chem. 2002, 67, 2881.
(9) For selected examples on the construction of the isotwistane core
via an intramolecular DielsÀAlder reaction from the cyclohexadienone
system, see: (a) Krantz, A.; Lin, C. Y. J. Am. Chem. Soc. 1973, 95, 5662.
ꢀ
(b) Macas, T. S.; Yates, P. Tetrahedron Lett. 1983, 24, 147. (c) Frater, G.;
Wenger, J. Helv. Chim. Acta 1984, 67, 1702. (d) Bhamare, N. K.;
Granger, T.; Macas, T. S.; Yates, P. J. Chem. Soc., Chem. Commun.
1990, 739. (e) Njardarson, J. T.; McDonald, I. M.; Spiegel, D. A.; Inoue,
M.; Wood, J. L. Org. Lett. 2001, 3, 2435. (f) Spangler, J. E.; Sorensen,
E. J. Tetrahedron 2009, 65, 6739. (g) Mitasev, B.; Porco, J. A., Jr. Org.
Lett. 2009, 11, 2285.
(10) For selected examples on the construction of the isotwistane core
via Michael addition/Aldol reaction from the cyclohexenone system,
see: Niwa, H.; Wakamatsu, K.; Hida, T.; Niiyama, K.; Kigoshi, H.;
Yamada, M.; Nagase, H.; Suzuki, M.; Yamada, K. J. Am. Chem. Soc.
1984, 106, 4547.
(11) Zhao, C.; Zheng, H.; Jing, P.; Fang, B.; Xie, X.; She, X. Org.
Lett. 2012, 14, 2293.
(12) For selected reviews on the oxidative dearomatization/intramo-
lecular DielsÀAlder reaction, see: (a) Liao, C.-C.; Peddinti, R. K. Acc.
Chem. Res. 2002, 35, 856. (b) Liao, C.-C. Pure Appl. Chem. 2005, 77,
1221 and references therein.
(13) For some reviews on the intramolecular DielsÀAlder reaction in
organic synthesis, see: (a) Funk, R. L.; Vollhardt, K. P. C. Chem. Soc.
Rev. 1980, 9, 41. (b) Brieger, G.; Bennet, J. N. Chem. Rev. 1980, 80, 63. (c)
Ciganek, E. Org. React. 1984, 32, 1–374. (d) Roush, W. R. Intramole-
cular Diels-Alder Reactions. In Comprehensive Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 5, pp
513À550. (e) Winkler, J. D. Chem. Rev. 1996, 96, 167. (f) Bear, B. R.;
Sparks, S. M.; Shea, K. J. Angew. Chem., Int. Ed. 2001, 40, 820. (g)
Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650. (h) Nicolaou, K. C.;
Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem.,
Int. Ed. 2002, 41, 1668. (i) Takao, K.-i.; Munakata, R.; Tadano, K.-i.
Chem. Rev. 2005, 105, 4779. (j) Tadano, K.-i. Eur. J. Org. Chem. 2009,
4381. (k) Juhl, M.; Tanner, D. Chem. Soc. Rev. 2009, 38, 2983.
Initially to address the feasibility of the efficient con-
struction of functionally simplified tricyclic isotwistane
core A1 from C (Scheme 1), we started with known
enone 114 (Scheme 2). Disubstituted cyclohexenone 2 was
(14) (a) Patterson, J. W. Tetrahedron 1993, 49, 4789. (b) Mphahlele,
M. J.; Modro, T. A. J. Org. Chem. 1995, 60, 8236.
Org. Lett., Vol. 14, No. 14, 2012
3697