Organic Letters
Letter
Lopez, J.-A.; Oliva-Madrid, M.-J.; Saura-Llamas, I.; Bautista, D.;
Vicente, J. Chem. Commun. 2012, 48, 6744−6746. (q) Parthasarathy,
K.; Han, H.; Prakash, C.; Cheng, C.-H. Chem. Commun. 2012, 48,
6580−6582. (r) Huters, A. D.; Styduhar, E. D.; Garg, N. K. Angew.
Chem., Int. Ed. 2012, 51, 3758−3765.
the compatibility of nonaflate 8a with microwave heating,
TBAT and CsF fluoride sources, transition-metal catalysis, and
MeCN, THF, and toluene reaction solvents.
In conclusion, we have devised a novel continuous flow
process for the synthesis of 2-(trimethylsilyl)phenyl triflate and
nonaflate aryne precursors in excellent yields and purities. The
flow preparation processes are scalable on a concentration
range from 0.1 to 1 M and thus output 2−20 mmol of fine
product per hour without further purification. We have used the
cheaper and more stable reagent NfF to prepare a range of
nonaflate aryne precursors in flow, and demonstrated their
effectiveness in a range of aryne chemistries. Further
applications of these reagents and processes in arene synthesis
will be reported in due course.
(4) Current prices: 2-(trimethylsilyl)phenyl triflate, 1a. $167 per 5 g;
triflic anhydride, $348 per 100 g; nonaflyl fluoride, $225 per 100 g (all
from Sigma-Aldrich Chemical Co.).
́ ́
(5) Pena, D.; Cobas, A.; Perez, D.; Guitian, E. Synthesis 2002, 1454−
̃
1458.
(6) Other preparations of 1a have been reported: (a) Bronner, S. M.;
Garg, N. K. J. Org. Chem. 2009, 74, 8842−8843 (three-step synthesis
of 1a from phenol via directed lithiation of the derived isopropyl
carbamate). (b) Atkinson, D. J.; Sperry, J.; Brimble, M. A. Synthesis
2010, 911−913 (modification of Kobayashi’s four-step synthesis from
chlorophenols).
(7) (a) Hall, C.; Henderson, J. L.; Ernouf, G.; Greaney, M. F. Chem.
Commun. 2013, 49, 7602−7604. (b) Pirali, T.; Zhang, F. Z.; Miller, A.
H.; Head, J. L.; McAusland, D.; Greaney, M. F. Angew. Chem., Int. Ed.
2012, 51, 1006−1009. (c) McAusland, D.; Seo, S.; Pintori, D. G.;
Finlayson, J.; Greaney, M. F. Org. Lett. 2011, 13, 3667−3669.
(d) Biswas, K.; Greaney, M. F. Org. Lett. 2011, 13, 4946−4949.
(e) Cant, A. A.; Roberts, L.; Greaney, M. F. Chem. Commun. 2010, 46,
8671−8673. (f) Cant, A. A.; Bertrand, G. H. V.; Henderson, J. L.;
Roberts, L.; Greaney, M. F. Angew. Chem., Int. Ed. 2009, 48, 5199−
5202.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, characterization data, and copies of
spectroscopic data. This material is available free of charge via
■
S
AUTHOR INFORMATION
Corresponding Author
■
(8) Recent examples of flow lithiation: (a) Newby, J. A.; Huck, L.;
Blaylock, D. W.; Witt, P. M.; Ley, S. V.; Browne, D. L. Chem.Eur. J.
2014, 20, 263−271. (b) Murray, P. R. D.; Browne, D. L.; Pastre, J. C.;
Butters, C.; Guthrie, D.; Ley, S. V. Org. Process Res. Dev. 2013, 17,
1192−1208. (c) Nagaki, A.; Matsuo, C.; Kim, S.; Saito, K.; Miyazaki,
A.; Yoshida, J.-i. Angew. Chem., Int. Ed. 2012, 51, 3245−3248. (d) Shu,
W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51, 5355−5358.
(e) Nagaki, A.; Moriwaki, Y.; Yoshida, J.-i. Chem. Commun. 2012, 48,
11211−11213. (f) Kim, H.; Nagaki, A.; Yoshida, J.-i. Nat. Commun.
2011, 2, 264. (g) Nagaki, A.; Tokuok, S.; Yamada, S.; Tomida, Y.;
Oshiro, K.; Amii, H.; Yoshida, J.-i. Org. Biomol. Chem. 2011, 9, 7559−
7563. (h) Shu, W.; Pellegatti, L.; Oberli, M. A.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2011, 50, 10665−10669. (i) Browne, D. L.; Baumann,
M.; Harji, B. H.; Baxendale, I. R.; Ley, S. V. Org. Lett. 2011, 13, 3312−
3315.
Author Contributions
The manuscript was written through contributions of both
authors.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the EPSRC for funding (Leadership Fellowship to
MFG). Dr. Christopher Smith (University of Manchester) is
thanked for helpful discussions.
(9) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N.; Smith, C.
D.; Tierney, J. P. Org. Biomol. Chem. 2008, 6, 1577−1586.
(10) (a) Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675−680.
(b) Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Angew.
Chem., Int. Ed. 2009, 48, 4017−4021. (c) Sahoo, H. R.; Kralj, J. G.;
Jensen, K. F. Angew. Chem., Int. Ed. 2007, 46, 5704−5708.
(11) (a) Moore, J. S.; Jensen, K. F. Org. Process Res. Dev. 2012, 16,
1409−1415. (b) Reizman, B. J.; Jensen, K. F. Org. Process Res. Dev.
2012, 16, 1770−1782.
REFERENCES
■
(1) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983,
1211−1214.
(2) Reviews: Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 122,
3550−3577. (b) Gampe, C. M.; Carreira, E. M. Angew. Chem., Int. Ed.
2012, 51, 3766−3778. (c) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem.
Soc. Rev. 2012, 41, 3140−3152. (d) Dubrovskiy, A. V.; Markina, N. A.;
Larock, R. C. Org. Biomol. Chem. 2013, 11, 191−218.
(3) Selected recent examples: (a) Goetz, A. E.; Silberstein, A. L.;
Corsello, M. A.; Garg, N. K. J. Am. Chem. Soc. 2014, 136, 3036−3039.
(b) Fine Nathel, N. F.; Shah, T. K.; Bronner, S. M.; Garg, N. K. Chem.
Sci. 2014, DOI: 10.1039/C4SC00256C. (c) Yuan, W.; Ma, S. Org. Lett.
2014, 16, 193−195. (d) Nagashima, Y.; Takita, R.; Yoshida, K.;
Hirano, K.; Uchiyama, M. J. Am. Chem. Soc. 2013, 135, 18730−18733.
(e) Bhojgude, S. S.; Kaicharla, T.; Biju, A. T. Org. Lett. 2013, 15,
5452−5455. (f) Bhunia, A.; Roy, T.; Pachfule, P.; Rajamohanan, P. R.;
Biju, A. T. Angew. Chem., Int. Ed. 2013, 52, 10o4o−10043. (g) Yoshida,
H.; Yoshida, R.; Takaki, K. Angew. Chem., Int. Ed. 2013, 52, 8629−
8632. (h) Stephens, D.; Zhang, Y.; Cormier, M.; Chavez, G.; Arman,
H.; Larionov, O. V. Chem. Commun. 2013, 49, 6558−6560. (i) Zeng,
Y.; Zhang, L.; Zhao, Y.; Ni, C.; Zhao, J.; Hu, J. J. Am. Chem. Soc. 2013,
135, 2955−2958. (j) Sloan Devlin, A.; Du Bois, J. Chem. Sci. 2013, 4,
1059−1063. (k) Goetz, A. E.; Garg, N. K. Nat. Chem. 2013, 5, 54−60.
(l) Kim, J.; Stoltz, B. M. Tetrahedron Lett. 2012, 53, 4994−4996.
(m) Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 11232−
11256. (n) Okuma, K.; Itoyama, R.; Sou, A.; Nagahora, N.; Shioj, K.
Chem. Commun. 2012, 48, 11145−11147. (o) Aoki, T.; Koya, S.;
Yamasaki, R.; Saito, S. Org. Lett. 2012, 14, 4506−4509. (p) Garcia-
(12) (a) Niederprum, H.; Voss, P.; Beyl, V. Liebigs Ann. Chem. 1973,
20−32. (b) Subramanian, L. R.; Bentz, H.; Hanack, M. Synthesis 1973,
293−294.
(13) (a) Ikawa, T.; Nishiyama, T.; Nosaki, T.; Takagi, A.; Akai, S.
Org. Lett. 2011, 13, 1730−1733. (b) Ikawa, T.; Masuda, S.; Nishiyama,
T.; Takagi, A.; Akai, S. Aust. J. Chem. 2014, 67, 475−480.
(14) Sumida, Y.; Kato, T.; Hosoya, T. Org. Lett. 2013, 15, 2806−
2809.
(15) Pena, D.; Escudero, S.; Per
Chem., Int. Ed. 1998, 37, 2659−2661.
(16) Pintori, D. G.; Greaney, M. F. Org. Lett. 2009, 12, 168−171.
(17) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340−
5341.
́
ez, D.; Guitian
́
, E.; Castedo, L. Angew.
̃
D
dx.doi.org/10.1021/ol500959e | Org. Lett. XXXX, XXX, XXX−XXX