Journal of the American Chemical Society
Communication
(9) (a) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
(b) Arthur, G. The Amide Linkage: Selected Structural Aspects in
Chemistry, Biochemistry, and Materials Science; Wiley-Interscience: New
York, 2000.
(10) Selected examples: (a) Lygin, A. V.; de Meijere, A. Org. Lett.
2009, 11, 389. (b) Kianmehr, E.; Rajabi, A.; Ghanbari, M. Tetrahedron
Lett. 2009, 50, 1687. (c) Chorell, E.; Das, P.; Almqvist, F. J. Org. Chem.
2007, 72, 4917. (d) Miura, T.; Takahashi, Y.; Murakami, M. Chem.
Commun. 2007, 3577. (e) Koike, T.; Takahashi, M.; Arai, N.; Mori, A.
Chem. Lett. 2004, 1364. (f) Christophersen, C.; Begtrup, M.; Ebdrup,
S.; Petersen, H.; Vedsø, P. J. Org. Chem. 2003, 68, 9513.
(24) See, for example: (a) Tobisu, M.; Shimasaki, T.; Chatani, N.
Angew. Chem., Int. Ed. 2008, 47, 4866. (b) Ref 7a. (c) Ref 17b.
(d) Brauer, D. J.; Krueger, C. Inorg. Chem. 1977, 16, 884. (e) Chatt, J.;
Duncanson, L. A.; Venanzi, L. M. J. Chem. Soc. 1955, 4456.
(25) A comparative study of a variety of activated C(sp2)−O
electrophiles led us to identify aryl tosylates as the most suitable
electrophiles; other groups such as aryl triflates or sulfamates were
found much less efficient in our reductive amidation protocol. See ref
18.
(26) The use of NaI and other iodide sources as additives has been
found to be beneficial in Ni-catalyzed reductive coupling reactions:
(a) Prinsell, M. R.; Everson, D. A.; Weix, D. J. Chem. Commun. 2010,
5743. (b) Iyoda, M.; Otsuka, H.; Sato, K.; Nisato, N.; Oda, M. Bull.
Chem. Soc. Jpn. 1990, 63, 80. (c) Iyoda, M.; Sakaitini, M.; Otsuka, H.;
Oda, M. Chem. Lett. 1985, 127. (d) Piber, M.; Jensen, A. E.;
(11) Reviews: (a) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew.
̈
Chem., Int. Ed. 2009, 48, 4114. (b) Li, Y.; Xue, D.; Wang, C.; Liu, Z.;
Xiao, J. Chem. Commun. 2012, 48, 1320.
(12) Examples: (a) Odell, L. R.; Savmarker, J.; Larhed, M.
̈
Rottlander, M.; Knochel, P. Org. Lett. 1999, 1, 1323. (e) Ref 5d.
̈
Tetrahedron Lett. 2008, 49, 6115. (b) Larhed, M.; Wannberg, J. In
Modern Carbonylation Methods; Kollar, L., Ed.; Wiley-VCH:
Weinheim, 2008; p 93.
(27) Reviews dealing with cross-coupling reactions of aryl chlorides:
(a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
(b) Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047.
(28) These results are in sharp contrast with the use of aryl iodides or
bromides for similar purposes at high temperatures; see ref 16.
(29) Aryl isocyanates could not be utilized as coupling partners in
catalytic reductive amidation processes with either aryl pivalates or
tosylates. In all cases analyzed, we found considerable amounts of
isocyanurates via trimerization of the aryl isocyanate. Such
trimerization is well-documented in the presence of zerovalent metal
complexes: (a) Paul, F.; Moulin, S.; Piechaczyk, O.; Le Floch, P.;
Osborn, J. A. J. Am. Chem. Soc. 2007, 129, 7294. (b) Foley, S. R.; Yap,
G. P.; Richeson, D. S. Organometallics 1999, 18, 4700. (c) Tang, J.-S.;
Verkade, J. G. Angew. Chem., Int. Ed. Engl. 1993, 32, 896. Similarly,
isocyanates bearing tosyl or silyl groups could not be utilized.
(30) Muto, K.; Yamaguchi, J.; Lei, A.; Itami, K. J. Am. Chem. Soc.
2013, 135, 16384.
(13) Selected examples: (a) Shin, K.; Ryu, J.; Chang, S. Org. Lett.
2014, 16, 2022. (b) Zhou, B.; Hou, W.; Yang, Y.; Li, Y. Chem.Eur. J.
2013, 19, 4701. (c) Muralirajan, K.; Parthasarathy, K.; Cheng, C.-H.
Org. Lett. 2012, 14, 4262. (d) Hesp, K. D.; Bergman, R. G.; Ellman, J.
A. J. Am. Chem. Soc. 2011, 133, 11430.
(14) Classical synthetic methods en route to benzamides: (a) El-
Faham, A.; Albericio, F. Chem. Rev. 2011, 111, 6557. (b) Valeur, E.;
Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
(15) Alternative oxidative catalytic amidation of alcohols or amines:
(a) De Sarkar, S.; Studer, A. Org. Lett. 2010, 12, 1992. (b) Yoo, W.-J.;
Li, C.-J. J. Am. Chem. Soc. 2006, 128, 13064. (c) Gunanathan, C.; Ben-
David, Y.; Milstein, D. Science 2007, 317, 790. (d) Nordstrøm, L. U.;
Vogt, H.; Madsen, R. J. Am. Chem. Soc. 2008, 130, 17672. For other
amidation methods, see: (e) Naredla, R. R.; Klumpp, D. A.
́
Tetrahedron Lett. 2012, 53, 4779. (f) Lopez, B.; Rodriguez, A.;
(31) While not entirely conclusive, such a scenario was supported by
the fact that chloro(1-naphthyl)(dppf)nickel(II) was catalytically
competent as reaction intermediate under the optimized reaction
conditions.
Santos, D.; Albert, J.; Ariza, X.; Garcia, J.; Granell, J. Chem. Commun.
2011, 47, 1054. (g) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.;
Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem.
Soc. 2004, 126, 14342.
(32) The available data, however, do not allow us to rigorously rule
out Ni(I) intermediates via single electron transfer processes or
comproportionation events. For some references in this regard:
(a) Goldup, S. M.; Leigh, D. A.; McBurney, R. T.; McGonigal, P. R.;
Plant, A. Chem. Sci. 2010, 1, 383. (b) Refs 5a, 6a, 6c, 7a, 17b, and 26a.
(c) Velian, A.; Lin, S.; Miller, A. J. M.; Day, M. W.; Agapie, T. J. Am.
Chem. Soc. 2010, 132, 6296. (d) Jones, G. D.; Martin, J. L.; McFarland,
C.; Allen, O. R.; Hall, R. E.; Haley, A. D.; Brandon, R. J.; Konovalova,
T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. J. J. Am. Chem. Soc. 2006,
128, 13175.
(16) Reductive cleavage of organic halides with isocyanates: Hsieh, J.-
C.; Cheng, C.-H. Chem. Commun. 2005, 4554.
(17) (a) Cornella, J.; Martin, R. Org. Lett. 2013, 15, 6298.
́
(b) Cornella, J.; Gomez-Bengoa, E.; Martin, R. J. Am. Chem. Soc.
́
2013, 135, 1997. (c) Alvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc.
2010, 132, 17352. (d) See refs 3a and 7a.
(18) See Supporting Information for more details. The optimal Ni:L
ratio was found to be 1:2; little conversion was observed at lower Ni:L
ratio and lower catalyst loading. In all cases, reduced arenes and free
alcohols were observed as byproducts.
(19) The difference in reactivity when using Zn and Mn is in analogy
with recent literature data on reductive coupling events. See, for
example, refs 5, 6a, and 6c.
(20) The use of other related C(sp2)−O electrophiles such as
naphthyl acetates, carbamates, or benzoates provided amide 2aa in
comparatively much lower yields. See ref 18.
(21) The higher reactivity of benzylic C(sp3)−O bonds is illustrated
by the observation that a mixture of 1a and 1d (1:1 ratio) with
cyclohexyl isocyanate at rt using Mn as reductant resulted in 2ag and
2dg (1:10 ratio). This result is in agreement with the higher reactivity
of benzylic over aromatic moieties in related reductive coupling events.
See for example, refs 6a and 7a.
(22) Competitive reduced arene was found in the reaction mixture.
(23) Selected C−O activation events limited to the use of π-extended
systems: (a) Wisniewska, H. M.; Swift, E. C.; Jarvo, E. R. J. Am. Chem.
Soc. 2013, 135, 9083. (b) Taylor, B. L.; Harris, M. R.; Jarvo, E. R.
Angew. Chem., Int. Ed. 2012, 51, 7790. (c) Taylor, B. L. H.; Swift, E. C.;
Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389. (d) Yu,
D.-G.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 7097. (e) Yu, D.-G.;
Li, B.-J.; Zheng, S.-F.; Guan, B.-T.; Wang, B.-Q.; Shi, Z.-J. Angew.
Chem., Int. Ed. 2010, 49, 4566.
D
dx.doi.org/10.1021/ja5029793 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX