Page 3 of 3
ChemComm
35 1. E. Kozma and M. Catellani, Dyes Pigm., 2013, 98, 160-179.
2. X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R.
DOI: 10.1039/C4CC02124J
3. C. Li and H. Wonneberger, Adv. Mater., 2012, 24, 613-636.
yield in the case of the NDIs and the absence of any reaction in
the case of the non-condensed aromatics indicate that the reaction
works best for large electron-deficient -systems.
4. C. Huang, S. Barlow and S. R. Marder, J. Org. Chem., 2011, 76,
2386-2407.
5. T. Weil, T. Vosch, J. Hofkens, K. Peneva and K. Müllen, Angew.
Chem., 2010, 122, 9252-9278.
6. V. Casagrande, E. Salvati, A. Alvino, A. Bianco, A. Ciammaichella,
C. D’Angelo, L. Ginnari-Satriani, A. M. Serrilli, S. Iachettini, C.
Leonetti, S. Neidle, G. Ortaggi, M. Porru, A. Rizzo, M. Franceschin
and A. Biroccio, J. Med. Chem., 2011, 54, 1140-1156.
7. Y. Shibano, T. Umeyama, Y. Matano and H. Imahori, Org. Lett.,
2007, 9, 1971-1974.
40
45
50
55
60
7 R=
8. F. Yukruk, A. L. Dogan, H. Canpinar, D. Guc and E. U. Akkaya,
Org. Lett., 2005, 7, 2885-2887.
9. J. Fortage, M. Séverac, C. Houarner-Rassin, Y. Pellegrin, E. Blart
and F. Odobel, J. Photochem. Photobiol. A, 2008, 197, 156-169.
10. F. Würthner, Chem. Commun., 2004, 1564-1579.
11. Y. Zhao and M. R. Wasielewski, Tetrahedron Lett., 1999, 40, 7047-
7050.
12. L. Fan, Y. Xu and H. Tian, Tetrahedron Lett., 2005, 46, 4443-4447.
13. F. Würthner, V. Stepanenko, Z. Chen, C. R. Saha-Möller, N. Kocher
and D. Stalke, J. Org. Chem., 2004, 69, 7933-7939.
14. X. Kong, J. Gao, T. Ma, M. Wang, A. Zhang, Z. Shi and Y. Wei,
Dyes Pigm., 2012, 95, 450-454.
Amine
T [°C]
rt
T [°C]
24 h
A
B
8a (22 %)
9a (6 %)
8b (12 %)
-
90 °C
24 h
7´ R=
15. G. Battagliarin, C. Li, V. Enkelmann and K. Müllen, Org. Lett.,
2011, 13, 3012-3015.
16. S. Nakazono, S. Easwaramoorthi, D. Kim, H. Shinokubo and A.
Osuka, Org. Lett., 2009, 11, 5426-5429.
65 17. S. Nakazono, Y. Imazaki, H. Yoo, J. Yang, T. Sasamori, N. Tokitoh,
T. Cédric, H. Kageyama, D. Kim, H. Shinokubo and A. Osuka,
Chem. Eur. J., 2009, 15, 7530-7533.
Amine
T [°C]
rt
T [°C]
24 h
A
B
HN
8´a (20 %) 8´b (36 %)
9´b (19 %)
60 °C
24 h
-
18. W. Yue, Y. Li, W. Jiang, Y. Zhen and Z. Wang, Org. Lett., 2009, 11,
5430-5433.
5 Scheme 3 and Table 2 Copper catalyzed amination of NDIs.
70 19. H. Langhals, S. Christian and A. Hofer, J. Org. Chem., 2013, 78,
9883-9891 .
20. G. Rauch and S. Höger, Pending Ger. Patent, 2013.
21. Preliminary experiments with primary amines using different reaction
conditions indicate that pure triamino PDIs are accessible in high
Conclusions
In summary, we have demonstrated a new synthetic route to
receive amino substituted PDIs and NDIs. The synthesis requires
rather low cost copper salts as catalysts, is easy to perform since
10 it is neither air nor moisture sensitive, is fast and, depending on
the specific product, gives high compound yields. Since the
disubstituted products are no mixtures of isomers, purification is
75
yields using our method
22. J. R. Clifton and J. T. Yoke, Inorg. Chem., 1968, 7, 39-46.
23. D. Mackay and W. A. Waters, J. Chem. Soc. C, 1966, 813-816.
24. P. Neta, P. Maruthamuthu, P. M. Carton and R. W. Fessenden, J.
Phys. Chem., 1978, 82, 1875-1878.
much
simpler
than
in
the
classical
route
via 80 25. A. Gansäuer, M. Behlendorf, D. von Laufenberg, A. Fleckhaus, C.
Kube, D. V. Sadasivam and R. A. Flowers, Angew. Chem., 2012,
124, 4819-4823.
bromination/substitution. The selectivity of the reaction protocol
15 allows the amination of the PDIs and NDIs in the presence of
other aromatic substituents at the imide nitrogen and thus may
give access to amino substituted PDIs (NDIs) that are parts of
more complex structures containing several other aromatic
elements. Although the exact mechanism is not clear at present,
20 we speculate about a radical aromatic substitution reaction
mechanism and not about a CH activation mechanism. Further
studies in this direction are in progress.
26. J. M. Mayer, Acc. Chem. Res., 2011, 44, 36-46.
27. S. V. Bhosale, C. H. Jani and S. J. Langford, Chem. Soc. Rev., 2008,
85
37, 331-342.
28. N. Sakai, J. Mareda, E. Vauthey and S. Matile, Chem. Commun.,
2010, 46, 4225-4237.
29. S. Chopin, F. Chaignon, E. Blart and F. Odobel, J. Mater. Chem.,
2007, 17, 4139-4146.
90 30. R. S. K. Kishore, V. Ravikumar, G. Bernardinelli, N. Sakai and S.
Matile, J. Org. Chem., 2007, 73, 738-740.
31. L. Shen, X. Lu, H. Tian and W. Zhu, Macromolecules, 2011, 44,
5612-5618.
32. X. Lu, W. Zhu, Y. Xie, X. Li, Y. Gao, F. Li and H. Tian, Chem. Eur.
Notes and references
95
J., 2010, 16, 8355-8364.
G. Rauch, Prof. Dr. S. Höger, Kekulé-Institut für Organische Chemie und
25 Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-
Domagk-Strasse 1, 53121 Bonn (Germany). Fax: +49 228 735662; Tel:
33. S. Gabutti, S. Schaffner, M. Neuburger, M. Fischer, G. Schafer and
M. Mayor, Org. Biomol. Chem., 2009, 7, 3222-3229.
34. M. Lista, J. Areephong, N. Sakai and S. Matile, J. Am. Chem. Soc.,
2011, 133, 15228-15231.
100 35. X. Lu, H.-W. Liu and W. Zhu, Imaging Sci. Photochem., 2011, 29,
344-352.
Financial Support by the Volkswagenstiftung is gratefully acknowledged.
30
36. S.-L. Suraru and F. Würthner, J. Org. Chem., 2013, 78, 5227-5238.
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See
DOI: 10.1039/b000000x/
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3