D. Montoir, A. Tonnerre, M. Duflos, M.-A. Bazin
FULL PAPER
7.16 (s, 1 H), 3.83 (s, 3 H), 2.43 (s, 6 H) ppm. 13C NMR (100 MHz,
[D6]DMSO): δ = 161.8 (d, J = 240 Hz), 160.6, 156.5, 150.6, 144.9,
138.4 (d, J = 8 Hz), 138.2, 137.7 (2 C), 135.5, 131.0, 130.0 (d, J =
1 Hz), 129.9 (d, J = 12 Hz), 124.9 (2 C), 124.8 (d, J = 2 Hz), 115.5
(d, J = 22 Hz), 115.1, 114.9 (d, J = 20 Hz), 104.6, 29.7, 21.0 (2
C) ppm. HRMS (ESI): calcd. for C23H19FN2O [M + H]+ 359.1554;
found 359.1550.
150.6, 150.3 (2 C), 145.3, 143.8, 136.1, 129.9, 129.4, 126.8, 126.2,
125.7, 121.1 (2 C), 116.5, 106.2, 30.0 ppm. HRMS (ESI): calcd. for
C18H13N3OS [M + H]+ 320.0852; found 320.0847.
Supporting Information (see footnote on the first page of this arti-
cle): Full experimental details, characterization data, and 1H and
13C NMR spectra for new products.
General Procedure for Microwave-Promoted One-Pot Sequential
Suzuki–Miyaura Cross-Coupling of 7b: To a vessel (40 mL) were
added compound 7b (0.47 mmol) in 1,4-dioxane/water (4:1,
10 mL), the appropriate boron reagent (0.47 mmol), Na2CO3
(124 mg, 1.17 mmol), and Pd(PPh3)4 (27 mg, 5 mol-%). The tube
was sealed, and the reaction was heated under microwave irradia-
tion at 80 °C from 10 min to 1.5 h (as indicated in Table 5). After
completion of the reaction (monitored by UPLC–MS), the second
boron reagent (0.47 mmol) was added to the crude reaction mixture
along with Pd(PPh3)4 (27 mg, 5 mol-%) and Na2CO3 (124 mg,
1.17 mmol). The tube was sealed, and the mixture was subjected to
microwave irradiation at 105 °C from 1.5 h to 3.5 h (as indicated
in Table 5). After cooling, water was added, and the mixture was
extracted with DCM. The organic layer was washed with brine,
dried with Na2SO4, filtered, and concentrated under reduced pres-
sure. The crude product was purified by silica gel chromatography
to provide 9a and 9h–9j (see Table 5).
Acknowledgments
Dr. Catherine Roullier is gratefully acknowledged for the HRMS
measurements.
[1] a) D. Sriram, P. Senthilkumar, M. Dinakaran, P. Yogeeswari,
A. China, V. Nagaraja, J. Med. Chem. 2007, 50, 6232–6239; b)
Z. Dang, Y. Yang, R. Ji, S. Zhang, Bioorg. Med. Chem. Lett.
2007, 17, 4523–4526; c) K. Lv, M.-L. Liu, L.-S. Feng, L.-Y.
Sun, Y.-X. Sun, Z.-Q. Wei, H.-Q. Guo, Eur. J. Med. Chem.
2012, 47, 619–625; d) L. Feng, K. Lv, M. Liu, S. Wang, J. Zhao,
X. You, S. Li, J. Cao, H. Guo, Eur. J. Med. Chem. 2012, 55,
125–136.
[2] B. Singh, G. Y. Lesher, K. C. Pluncket, E. D. Pagani, D. C.
Bode, R. G. Bentley, M. J. Connell, L. T. Hamel, P. J. Silver, J.
Med. Chem. 1992, 35, 4858–4865.
[3] Z.-L. Zhou, J. M. Navratil, S. X. Cai, E. R. Whittemore, S. A.
Espitia, J. E. Hawkinson, M. Tran, R. M. Woodward, E. We-
ber, J. F. W. Keana, Bioorg. Med. Chem. 2001, 9, 2061–2071.
[4] F. Reck, R. Alm, P. Brassil, J. Newman, B. DeJonge, C. J.
Eyermann, G. Breault, J. Breen, J. Comita-Prevoir, M. Cronin,
H. Davis, D. Ehmann, V. Galullo, B. Geng, T. Grebe, M.
Morningstar, P. Walker, B. Hayter, S. Fisher, J. Med. Chem.
2011, 54, 7834–7847.
[5] a) A. M. Thompson, G. W. Rewcastle, S. L. Boushelle, B. G.
Hartl, A. J. Kraker, G. H. Lu, B. L. Batley, R. L. Panek,
H. D. H. Showalter, W. A. Denny, J. Med. Chem. 2000, 43,
3134–3147; b) S. R. Natarajan, L. Liu, M. Levorse, J. E.
Thompson, E. A. O’Neill, S. J. O’Keefe, K. A. Vora, R. Cveto-
vich, J. Y. Chung, E. Carballo-Jane, D. M. Visco, Bioorg. Med.
Chem. Lett. 2006, 16, 5468–5471; c) D. L. Flynn, M. D. Kauf-
man, W. C. Patt, P. A. Petillo, WO2008034008, 2008; d) Q.
Ding, Y. Xie, N. S. Gray, S. You, G. Chopiuk, J. Jiang, Y. Liu,
R. Steensma, X. Wang, T. Sim, WO2005034869, 2005; e) P.
Ren, G. Zhang, S. You, T. Sim, N. Gray, Y. Xie, X. Wang, Y.
He, WO2007136465, 2007; f) X. Li, X. Liu, J. Loren, V. Mol-
teni, J. Nabakka, V. Yeh, D. Chianelli, WO2009105712, 2009;
g) J. E. Tellew, S. Pan, Y. Wan, Y. Xie, X. Wang, X. Wang, S.
Huang, Z. Liu, Q. Zhang, WO2011097526, 2011.
[6] a) S. Marhadour, M.-A. Bazin, P. Marchand, Tetrahedron Lett.
2012, 53, 297–300; b) S. Marhadour, P. Marchand, F. Pagniez,
M.-A. Bazin, C. Picot, O. Lozach, S. Ruchaud, M. Antoine, L.
Meijer, N. Rachidi, P. Le Pape, Eur. J. Med. Chem. 2012, 58,
543–556; c) M.-A. Bazin, S. Marhadour, A. Tonnerre, P.
Marchand, Tetrahedron Lett. 2013, 54, 5378–5382.
[7] a) I. J. S. Fairlamb, Chem. Soc. Rev. 2007, 36, 1036–1045; b) X.
Ji, H. Huang, Y. Li, H. Chen, H. Jiang, Angew. Chem. 2012,
124, 7404; Angew. Chem. Int. Ed. 2012, 51, 7292–7296; c) V.
Gembus, J.-F. Bonfanti, O. Querolle, P. Jubault, V. Levacher,
C. Hoarau, Org. Lett. 2012, 14, 6012–6015; d) R. M. Cross, R.
Manetsch, J. Org. Chem. 2010, 75, 8654–8657; e) C. Mugnaini,
C. Falciani, M. De Rosa, A. Brizzi, S. Pasquini, F. Corelli, Tet-
rahedron 2011, 67, 5776–5783.
1-Methyl-3,7-diphenyl-1,6-naphthyridin-2(1H)-one (9a): Purification
by silica gel chromatography (mixtures of DCM/MeOH of increas-
ing polarity) afforded 9a (58% Yield). Analytical data agree with
previous characterization.
3-(3-Fluorophenyl)-7-(4-methoxyphenyl)-1-methyl-1,6-naphthyridin-
2(1H)-one (9h): Purification by silica gel chromatography (DCM)
afforded 9h (55% yield) as a beige powder; m.p. 160–161 °C. Rf =
1
0.19 (DCM). H NMR (400 MHz, [D6]DMSO): δ = 9.01 (s, 1 H),
8.34 (s, 1 H), 8.29 (d, J = 9.0 Hz, 2 H), 7.91 (s, 1 H), 7.67–7.63 (m,
2 H), 7.57–7.52 (m, 1 H), 7.29 (ddd, J = 8.6, 8.6, 2.1 Hz, 1 H), 7.13
(d, J = 9.0 Hz, 2 H), 3.89 (s, 3 H), 3.82 (s, 3 H) ppm. 13C NMR
(100 MHz, [D6]DMSO): δ = 161.8 (d, J = 240 Hz), 160.6 (2 C),
156.1, 150.7, 144.9, 138.5 (d, J = 8 Hz), 135.6, 130.7, 129.9 (d, J =
9 Hz), 129.6 (d, J = 3 Hz), 128.6 (2 C), 124.7 (d, J = 3 Hz), 115.5
(d, J = 23 Hz), 114.8 (d, J = 20 Hz), 114.7, 114.1 (2 C), 103.6,
55.3, 29.6 ppm. HRMS (ESI): calcd. for C22H17FN2O2 [M + H]+
361.1347; found 361.1341.
7-(3,5-Dimethylphenyl)-1-methyl-3-(pyridin-4-yl)-1,6-naphthyridin-
2(1H)-one (9i): Purification by silica gel chromatography (DCM/
MeOH, 98:2) and trituration with diisopropyl ether afforded 9i
(32% yield) as a beige powder; m.p. 233–234 °C. Rf = 0.10 (DCM/
MeOH, 98:2). 1H NMR (400 MHz, [D6]DMSO): δ = 9.05 (s, 1 H),
8.70 (d, J = 5.4 Hz, 2 H), 8.46 (s, 1 H), 7.95 (s, 1 H), 7.93 (s, 2 H),
7.82 (d, J = 5.4 Hz, 2 H), 7.16 (s, 1 H), 3.82 (s, 3 H), 2.42 (s, 6
H) ppm. 13C NMR (100 MHz, [D6]DMSO): δ = 160.3, 156.9,
150.9, 149.5 (2 C), 145.2, 143.5, 138.1, 137.8 (2 C), 136.5, 131.1,
128.7, 125.0 (2 C), 123.1 (2 C), 114.9, 104.7, 29.7, 21.0 (2 C) ppm.
HRMS (ESI): calcd. for C22H19N3O [M + H]+ 342.1601; found
342.1598.
1-Methyl-7-(pyridin-4-yl)-3-(thien-2-yl)-1,6-naphthyridin-2(1H)-one
(9j): Purification by silica gel chromatography (mixtures of DCM/
MeOH of increasing polarity) and trituration with diisopropyl
ether afforded 9j (33% yield) as a yellow powder; m.p. 261–262 °C.
[8] a) C.-C. Cheng, S.-J. Yan, The Friedländer Synthesis of Quinol-
ines, in: Organic Reactions (Ed.: W. G. Dauben), Wiley, New
York, 1982, vol. 28, p. 37–201; b) D. J. Brown (Ed.), Primary
Syntheses of 1,6-Naphthyridines, in: Chemistry of Heterocyclic
Compounds: The Naphthyridines, John Wiley & Sons, Inc., Ho-
boken, NJ, 2008, vol. 63, p. 67–89.
1
Rf = 0.15 (DCM/MeOH, 98:2). H NMR (400 MHz, [D6]DMSO):
δ = 9.12 (s, 1 H), 8.78–8.74 (m, 3 H), 8.28 (br. s, 2 H), 8.16 (s, 1
H), 7.99 (s, 1 H), 7.73 (d, J = 2.5 Hz, 1 H), 7.25 (s, 1 H), 3.87 (s,
3 H) ppm. 13C NMR (100 MHz, [D6]DMSO): δ = 159.8, 152.8,
[9] A. Suzuki, J. Organomet. Chem. 1999, 576, 147–168.
1494
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 1487–1495