A. Yadav, P. Patil, D. Chandam et al.
Journal of Molecular Structure 1245 (2021) 130960
Scheme 2. Synthesis of magnetically separable Fe3O4@SiO2-SO3H-DABCO catalyst.
(1H, s, -CH), 6.86-6.89 (2H, d, Ar-H, J=8.1), 7.13-7.16 (2H, d, Ar-H,
J=7.8), 7.28-7.43 (4H, d, Ar-H, J=7.8), 7.62-7.64 (2H, d, Ar-H, J=6.9),
8.05 (2H, s, Ar-H), 11.30 (1H, s, -NH), 11.50 (1H, s, -OH). 13C NMR
(75 MHz, DMSO-d6): δ 35.55, 55.26, 104.30, 105.81, 114.06, 116.59,
124.36, 124.81, 126.99, 127.61, 132.75, 152.44, 158.48, 164.60,
165.59, 169.26. MS (ESI): 397.25 m/z.
4-hydroxy-3-(5-methyl-1H-indol-3-yl)(phenyl)methyl)-2H-
chromen-2-one [4g] (Table 2, entry 7): White solid; M.p. 173-175 °C;
IR (KBr): 3848, 3779, 1733, 1670, 1620, 1525, 1491, 762, 720, 580
.
cm−1 1H NMR (400 MHz, CDCl3): δ 2.50 (3H, s, -CH3), 5.98 (1H,
s, -CH), 6.85 (2H, d, Ar-H), 6.92 (8H, d, Ar-H), 7.44 (2H, s, Ar-H),
7.84 (1H, s, -NH), 10.42 (1H, s, -OH). 13C NMR (100 MHz, CDCl3):
δ 21.69, 37.76, 108.51, 111.47, 114.10, 116.30, 116.55, 118.37, 123.10,
123.58, 123.83, 124.72, 126.01, 127.49, 127.68, 127.97, 128.37, 131.74,
134.84, 142.77, 152.56, 160.94, 162.74. MS (ESI): 381.30 m/z.
4-hydroxy-3-(7-methyl-1H-indol-3-yl)(phenyl)methyl)-2H-
chromen-2-one [4h]: (Table 2, entry 8): Pinkish white solid;
.
M.p. 238-240 °C; IR (KBr): 3855, 1605, 1554, 1089, 753 cm−1 1H
NMR (400 MHz, CDCl3): δ 1.60 (3H, s, -CH3), 6.11 (1H, s, -CH),
7.25-7.41 (9H, t, Ar-H, J=8), 7.64 (2H, d, Ar-H), 8.02-8.07 (2H, d,
Ar-H, J=8.1), 11.32 (1H, s, -OH), 11.54 (1H, s, -NH). 13C NMR (100
MHz, CDCl3): δ 36.15, 103.90, 105.62, 116.43, 116.64, 116.92,124.40,
124.89, 126.47, 126.88, 128.64, 132.87, 135.16, 152.28, 152.54,
164.61, 165.82, 166.89, 169.34. MS (EI): 381.33 m/z.
Fig. 2. FT-IR spectra of (a) Fe3O4, (b) Fe3O4@SiO2, (c) Fe3O4@SiO2-SO3H (d)
Fe3O4@SiO2-SO3H-DABCO and (e) Fe3O4@SiO2-SO3H-DABCO after 6th run.
Fe3O4@SiO2 (Figure 2b) exhibits peaks at 1088 cm−1 and 800
cm−1 confirming asymmetric and symmetric stretching vibrations
of the Si-O-Si bond [51]. The FT-IR spectrum of Fe3O4@SiO2-SO3H
shows absorptions at 3365 cm−1 for O-H stretching, 1079 cm−1
for S=O stretching, 800 cm−1 for S-OH bending and 660 cm−1
for S-OH stretching indicate the presence of sulphonic acid group
(Figure 2c) [52]. The FT-IR spectrum of Fe3O4@SiO2-SO3H-DABCO
(Figure 2d) consists of bands at 2935 cm−1 and 1460 cm−1 as-
signed for stretching and deformation vibrations of C-H bond while
C-N stretching appeared at 1210 cm−1 corroborate successful graft-
ing of DABCO on Fe3O4@SiO2-SO3H [53].
3. Results and discussion
3.1. Characterization of Fe3O4@SiO2-SO3H-DABCO
The synthesized Fe3O4@SiO2-SO3H-DABCO nanocomposite was
characterized by various tools such as Fourier transform-infrared
(FT-IR) spectroscopy, X-ray diffraction spectroscopy (XRD), thermo-
gravimetric analysis (TGA), field emission scanning electron mi-
croscopy (FE-SEM), coupled with energy-dispersive X-ray spec-
troscopy (EDX), transmission electron microscopy (TEM), vibrat-
ing sample magnetometry (VSM) and X-ray photoelectron spec-
troscopy (XPS).
3.1.2. X-ray diffraction (XRD) patterns of Fe3O4, Fe3O4@SiO2,
Fe3O4@SiO2-SO3H and Fe3O4@SiO2-SO3H-DABCO
3.1.1. FT-IR spectra of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2-SO3H and
Fe3O4@SiO2-SO3H-DABCO
The XRD patterns of synthesized Fe3O4, Fe3O4@SiO2 and
Fe3O4@SiO2-SO3H-DABCO are depicted in Figure 3. The reflections
observed at diffraction angles (2θ) 30.16°, 35.39°, 43.27°, 53.26°,
56.53°, 62.70° were successfully indexed with hkl values of (220),
(311), (400), (422), (511), (440) lattice indices of Fe3O4 [54]. The
XRD patterns of bare Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2-SO3H-
DABCO are identical with the XRD pattern of reference Fe3O4
Figure 2(a-d) shows FT-IR spectra of Fe3O4, Fe3O4@SiO2,
Fe3O4@SiO2-SO3H and Fe3O4@SiO2-SO3H-DABCO catalyst. The peak
that appeared at 586 cm−1 (Figure 2a) confirms the Fe-O stretch-
ing while the absorption at 1640 cm−1 and 3365 cm−1 (Figure 2a)
corresponds to bending and stretching vibrations of surface O-
H groups of Fe3O4 [48–50]. Further, the FT-IR spectrum of the
3