ChemComm
Communication
(d) X. Su, C. Chen, Y. Wang, J. Chen, Z. Lou and M. Li, Chem.
Commun., 2013, 49, 6752; (e) S. Zhu, L. Wu and X. Huang, J. Org.
Chem., 2013, 78, 9120; ( f ) Z.-H. Yu, H.-F. Zheng, W. Yuan, Z.-L. Tang,
A.-D. Zhang and D.-Q. Shi, Tetrahedron, 2013, 69, 8137; (g) K. K. H.
Chandrashekarappa, K. M. Mahadevan and K. B. Manjappa, Tetra-
hedron Lett., 2013, 54, 1368; (h) Y. Wang, X. Su and C. Chen, Synlett,
2013, 2619; (i) X. Zhang, X. Song, H. Li, S. Zhang, X. Chen, X. Yu and
W. Wang, Angew. Chem., Int. Ed., 2012, 51, 7282; ( j) K. K. Toh,
S. Sanjaya, S. Sahnoun, S. Y. Chong and S. Chiba, Org. Lett., 2012,
14, 2290; (k) X. Jia, F. Peng, C. Qing, C. Huo and X. Wang, Org. Lett.,
2012, 14, 4030; (l) Y. Zhang, M. Wang, P. Li and L. Wang, Org. Lett.,
2012, 14, 2206; (m) N. Sakai, K. Tamura, K. Shimamura, R. Ikeda and
T. Konakahara, Org. Lett., 2012, 14, 836; (n) S. Khong and O. Kwon,
J. Org. Chem., 2012, 77, 8257; (o) Y. Matsubara, S. Hirakawa,
Y. Yamaguchi and Z.-I. Yoshida, Angew. Chem., Int. Ed., 2011,
Scheme 3
2-aminobenzophenone 1a and diphenyl acetylene 2a were
employed. However, we did not detect their existence.
Moreover, 2-aminobenzophenone 1a could not be converted
into quinoline 3aa in the presence of 2-phenylacetophenone
(Scheme 3). These results indicated that protolysis of inter-
mediate B is less likely.
In conclusion, we demonstrate for the first time a palladium-
catalyzed one-pot method for the synthesis of quinolines from
2-amino aromatic ketones and alkynes. This transformation offers
an alternative method for the synthesis of polysubstituted
quinoline.
˜
50, 7670; (p) H. Richter and O. G. Mancheno, Org. Lett., 2011, 13,
6066; (q) G. Shan, X. Sun, Q. Xia and Y. Rao, Org. Lett., 2011, 13, 5770;
(r) S. Ali, H.-T. Zhu, X.-F. Xia, K.-G. Ji, Y.-F. Yang, X.-R. Song and
Y.-M. Liang, Org. Lett., 2011, 13, 2598; (s) M. T. Stone, Org. Lett., 2011,
˜
13, 2326; (t) R. Rohlmann, T. Stopka, H. Richter and O. G. Mancheno,
J. Org. Chem., 2013, 78, 6050; (u) G.-L. Gao, Y.-N. Niu, Z.-Y. Yan,
H.-L. Wang, G.- W. Wang, A. Shaukat and Y.-M. Liang, J. Org. Chem.,
2010, 75, 1305; (v) Z. Huo, I. D. Gridnev and Y. Yamamoto, J. Org.
Chem., 2010, 75, 1266; (w) X. Zhang, T. Yao, M. A. Campo and
R. C. Larock, Tetrahedron, 2010, 66, 1177; (x) C. Peng, Y. Wang,
L. Liu, H. Wang, J. Hao and Q. Hu, Eur. J. Org. Chem., 2010, 818;
(y) H. Venkatesan, F. Hocutt, T. Jones and M. Rabinowitz, J. Org. Chem.,
2010, 75, 3488; (z) N. T. Patil and V. S. Raut, J. Org. Chem., 2010,
75, 6961.
Financial support from the National Science Foundation of
China (No. 21102123 and 21372188) is greatly appreciated.
Notes and references
1 For reviews, see: (a) J. P. Michael, Nat. Prod. Rep., 2008, 25, 166;
(b) J. P. Michael, Nat. Prod. Rep., 2007, 24, 223.
5 W. Zhou, Y. Liu, Y. Yang and G.-J. Deng, Chem. Commun., 2012,
48, 10678.
2 For some selected examples, see: (a) B. D. Bax, P. F. Chan,
D. S. Eggleston, A. Fosberry, D. R. Gentry, F. Gorrec, I. Giordano,
M. M. Hann, A. Hennessy, M. Hibbs, J. Huang, E. Jones, J. Jones,
K. K. Brown, C. J. Lewis, E. W. May, M. R. Saunders, O. Singh,
C. E. Spitzfaden, C. Shen, A. Shillings, A. J. Theobald, A. Wohlkonig,
N. D. Pearson and M. N. Gwynn, Nature, 2010, 466, 935; (b) M. Rouffet,
C. A. F. de Oliveira, Y. Udi, A. Agrawal, I. Sagi, J. A. McCammon and
S. M. Cohen, J. Am. Chem. Soc., 2010, 132, 8232; (c) S. Andrews,
S. J. Burgess, D. Skaalrud, J. X. Kelly and D. H. Peyton, J. Med. Chem.,
2010, 53, 916; (d) A.-M. Lord, M. F. Mahon, M. D. Lloyd and
M. D. Threadgill, J. Med. Chem., 2009, 52, 868; (e) K. Andries,
P. Verhasselt, J. Guillemont, H. W. H. Gohlmann, J.-M. Neefs,
H. Winkler, J. V. Gestel, P. Timmerman, M. Zhu, E. Lee, P. Williams,
D. de Chaffoy, E. Huitric, S. Hoffner, E. Cambau, C. Truffot-Pernot,
N. Lounis and V. Jarlier, Science, 2005, 307, 223.
6 W. Zhou, Y. Yang, Z. Wang and G.-J. Deng, Org. Biomol. Chem., 2014,
12, 251.
7 B. Zhao and X. Lu, Tetrahedron Lett., 2006, 47, 6765.
8 There are reports for the synthesis of 3ai using 2-aminoacetophenone
and alkynylmagnesium bromide or terminal alkyne. However, these
methods could not employ internal alkyne as a substrate for the
synthesis of 2,3,4-polysubsitited quinolines, see: (a) H. Li, C. Wang,
H. Huang, X. Xu and Y. Li, Tetrahedron Lett., 2011, 52, 1108;
(b) C. Praveen, P. DheenKumar, D. Muralidharan and P. T. Perumal,
Bioorg. Med. Chem. Lett., 2010, 20, 7292; (c) I. Mohammadpoor-Baltork,
S. Tangestaninejad, M. Moghadam, V. Mirkhani, S. Anvar and
A. Mirjafari, Synlett, 2010, 3104; (d) B. Gabriele, R. Mancuso,
E. Lupinacci, R. Spina, G. Salerno, L. Veltri and A. Dibenedetto,
Tetrahedron, 2009, 65, 8507; (e) R. Sarma and D. Prajapati, Synlett,
2008, 3001; ( f ) K. C. Lekhok, D. Prajapati and R. C. Boruah, Synlett,
2008, 655; (g) X.-Y. Liu, P. Ding, J.-S. Huang and C.-M. Che, Org. Lett.,
2007, 9, 2645; (h) B. Gabriele, R. Mancuso, G. Salerno, G. Ruffolo and
P. Plastina, J. Org. Chem., 2007, 72, 6873.
3 For some recent examples, see: (a) V. Bhalla, V. Vij, M. Kumar,
P. R. Sharma and T. Kaur, Org. Lett., 2012, 14, 1012; (b) M. Velusamy,
C.-H. Chen, Y. S. Wen, J. T. Lin, C.-C. Lin, C.-H. Lai and P.-T. Chou,
¨
Organometallics, 2010, 29, 3912; (c) H. Li and F. Jakle, Macromolecules,
9 (a) T. Chanda, R. K. Verma and M. S. Singh, Chem. – Asian J., 2012,
7, 778; (b) H. Tajik, K. Niknam and M. Sarrafan, Synth. Commun.,
2011, 41, 2103; (c) S. V. Ryabukhin, V. S. Naumchik, A. S. Plaskon,
O. O. Grygorenko and A. A. Tolmachev, J. Org. Chem., 2011, 76, 5774;
2009, 42, 3448; (d) Z.-Q. Lei, H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang,
J. Sun and Z.-J. Shi, Angew. Chem., Int. Ed., 2012, 51, 2690.
4 For some recent examples, see: (a) P. Zhao, X. Yan, H. Yin and C. Xi,
Org. Lett., 2014, 16, 1120; (b) Y. Wang, C. Chen, J. Peng and M. Li,
Angew. Chem., Int. Ed., 2013, 52, 5323; (c) R. Yan, X. Liu, C. Pan,
X. Zhou, X. Li, X. Kang and G. Huang, Org. Lett., 2013, 15, 4876;
´
´
(d) R. Martınez, D. J. Ramon and M. Yus, Eur. J. Org. Chem., 2007,
1599 and references therein.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 5583--5585 | 5585