Copper(I)/N-Heterocyclic Carbene (NHC)-Catalyzed Addition of Terminal Alkynes
clopropylacetylene (1.8 mmol) were dissolved in 2 mL THF
and loaded into a second injection loop under argon. The
loops were connected with a switchable IDEX T-mixer and
fed into a 10-mL [1.6 mm (1/16“) O.D. (outer diameter)ꢄ
0.3 mm (0.012”) I.D. (inner diameter)] PTFE tubing at 908C
and at a rate of 25 mLminÀ1 each under 7 bar back pressure.
The resulting product mixture was collected and compound
3a isolated by flash column chromatography on silica gel
using a 5:1 mixture of hexanes and ethyl acetate. Full details
and characterization data can be found in the Supporting In-
formation.
Logue, G. Trainor, P. S. Anderson, S. K. Erickson-Vitta-
nen, Med. Chem. 2000, 43, 2019–2030.
[8] Access Campaign, Medicins Sans Frontieres, “Untan-
gling the web of antiretroviral price reductions, 16th
site/default/files/AIDS_Report_UT-
W16_ENG_2013.pdf, accessed in August 2013.
[9] D. Dai, X. Long, B. Luo, A. Kulesza, J. Reichwagen, Y.
Guo, (Lonza Ltd), PCT Int. Appl. WO2012097510,
2012.
[10] a) R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew.
Chem. 2011, 123, 7642–7661; Angew. Chem. Int. Ed.
2011, 50, 7502–7519; b) L. Malet-Sanz, F. Susanne, J.
Med. Chem. 2012, 55, 9, 4062.
[11] P. K. Fraser, S. Woodward, Tetrahedron Lett. 2001, 42,
2747.
[12] For reviews see: a) J. D. Egbert, C. S. Cazin, S. P.
Nolan, Catal. Sci. Technol. 2013, 3, 912–926; b) S. Diez-
Gonzalez, N. Marion, S. P. Nolan, Chem. Rev. 2009,
109, 3612–3676; c) S. Diez-Gonzalez, S. P. Nolan, Syn-
lett 2007, 2158–2167.
[13] a) D. Yu, Y. Zhang, Proc. Natl. Acad. Sci. USA, 2010,
107, 20184; b) W.-Z. Zhang, W.-J. Li, X. Zhang, H.
Zhou, X.-B. Lu, Org. Lett. 2010, 12, 4748.
[14] Soluble bases typically used in copper-catalyzed alkyny-
lations were also tested. Triethylamine and cesium car-
bonate furnished the product in only 11% and 58%
yields, respectively.
[15] Please refer to the Supporting Information for full re-
action conditions of each substrate.
Acknowledgements
The authors gratefully acknowledge the Max-Plank Society
for generous financial support.
References
[1] For selected reviews, see: a) B. M. Trost, A. H. Weiss,
Adv. Synth. Catal. 2009, 351, 963–983; b) E. M. Car-
reira, D. E. Frantz, in: Science of Synthesis – Stereose-
lective Synthesis, Vol. 2, (Ed.: G. A. Molander), Georg
Thieme Verlag, Stuttgart, 2011, pp 497–515; c) C.-J. Li,
Acc. Chem. Res. 2010, 43, 581–590; d) W.-J. Yoo, L.
Zhao, C.-J. Li, Aldrichimica Acta 2011, 44, 43–51; e) L.
Zani, C. Bolm, Chem. Commun. 2006, 4263–4275.
[2] a) K. Muller, C. Faeh, F. Diederich, Science 2007, 317,
1881; b) S. Purser, P. R. Moore, S. Swallow, V. Gouver-
neur, Chem. Soc. Rev. 2008, 37, 320; c) W. K. Hagmann,
J. Med. Chem. 2008, 51, 4359; d) P. Kirsch, Modern Flu-
oroorganic Chemistry: Synthesis Reactivity, Applica-
tions. Wiley-VCH, Weinheim, 2004; e) C. Isanbor, D. J.
OꢃHagan, J. Fluorine Chem. 2006, 127, 303.
[16] a) F. Lꢅvesque, P. H. Seeberger, Angew. Chem. 2012,
124, 1738–1741; Angew. Chem. Int. Ed. 2012, 51, 1706–
1709; b) D. Kopetzki, F. Lꢅvesque, P. H. Seeberger,
Chem. Eur. J. 2013, 19, 5450–5456.
[17] The active catalyst (IPr)CuO-t-Bu is soluble in ben-
zene. (IPr)CuCl and NaO-t-Bu could be pre-mixed in
benzene or a mixture of benzene and THF for easier
delivery into the microreactor, however lower yields
were obtained with this solvent system.
[3] R. Motoki, M. Kanai, M. Shibasaki, Org. Lett. 2007, 9,
2997–3000.
[4] G.-J. Deng, C.-J. Li, Synlett 2008, 1571–1573.
[5] N. Chinkov, A. Warm, E. M. Carreira, Angew. Chem.
2011, 123, 3014–3018; Angew. Chem. Int. Ed. 2011, 50,
2957–2961.
[6] a) L. A. Radesca, Y. S. Lo, J. R. Moore, M. E. Pierce,
Synth. Commun. 1997, 27, 4373–4384; b) M. E. Pierce,
R. L. Parsons, L. A. Radesca, Y. S. Lo, S. Silverman,
J. R. Moore, Q. Islam, A. Choudhury, J. M. Fortunak,
D. Nguyen, et al., J. Org. Chem. 1998, 63, 8536–8543;
c) A. Choudhury, J. R. Moore, M. E. Pierce, J. M. For-
tunak, I. Valvis, P. N. Confalone, Org. Process Res. Dev.
2003, 7, 324–328.
[7] a) R. C. Rizzo, M. Udier-Blagovic, D.-P. Wang, E. K.
Watkins, M. B. Kroeger Smith, R. H. Smith, J. Triado-
Rives, W. L. Jorgensen, J. Med. Chem. 2002, 45, 2970–
2987; b) J. W. Corbett, S. S. Ko, J. D. Rodgers, L. A.
Gearhart, N. A. Magnus, L. T. Bacheler, S. Diamond, S.
Jeffrey, R. M. Klabe, B. C. Cordova, S. Garber, K.
[18] Please see the Supporting Information for optimization
of the alkynylation reaction in flow.
[19] For examples of handling slurries in flow, see: a) T.
Horie, M. Sumino, T. Tanaka, Y. Matsushita, T. Ichi-
mura, J.-I. Yoshida, Org. Process Res. Dev. 2010, 14,
405; b) J. Sedelmeier, S. V. Ley, I. R. Baxendale, M.
Baumann, Org. Lett. 2010, 12, 3618; c) T. Noel, J. R.
Naber, R. L. Hartman, J. P. McMullen, K. Jensen, S. L.
Buchwald, Chem. Sci. 2011, 2, 287–290.
[20] The comparable batch reaction of 3a was performed on
the 1-mmol scale with 1.8 equivalents of cyclopropyla-
cetylene in THF (1M) at 908C for 200 min in a tightly
sealed reaction tube. An NMR yield of 84% was ob-
tained.
[21] a) Y. Asano, H. Ito, K. Hara, M. Sawamura, Organo-
metallics 2008, 27, 5984–5996; b) T. Ishii, R. Watanabe,
T. Moriya, H. Ohmiya, S. Mori, M. Sawamura, Chem.
Eur. J. 2013, 19, 13547–13553.
Adv. Synth. Catal. 2013, 355, 3517 – 3521
ꢂ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3521