Organic Letters
Letter
hydrocarbon was at a trace level (4n). Next, the selectivity of
primary and secondary benzylic hydrocarbons was tested using
4-ethyltoluene. The result showed that the ratio of 4o and 4o′
was 2:1. Additionally, our optimized reaction conditions were
not suitable for intramolecular amidation, as 2-methyl-
benzamide failed to produce isoindolin-1-one with most of
the starting materials recovered in the solvent of benzene.
To study the mechanism, control experiments were carried
out (Scheme 3). When 2 equiv of 2,2,6,6-tetramethylpiperidine-
details and possible synthetic applications are currently
underway in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectroscopic data (PDF)
Scheme 3. Radical Trapping Experiments
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (Grant Nos. 21172080 and 21372089) for financial
support.
1-oxyl (TEMPO) was added to the reaction under the standard
conditions, no desired product was detected in the reaction
mixture of eqs 1 and 2. Notably, the radical scavenger
completely suppressed the reaction, and the reaction mixture
of eq 2 offered product 5a (determined by GC−MS), which
implied a radical process was involved in the amidation
coupling.
REFERENCES
■
(1) (a) Wang, G.-W.; Yuan, T.-T.; Li, D.-D. Angew. Chem., Int. Ed.
2011, 50, 1380−1383. (b) Zhang, X. X.; Teo, W. T.; Chan, P. W. H. J.
Organomet. Chem. 2011, 696, 331−337. (c) Valeur, E.; Bradley, M.
Chem. Soc. Rev. 2009, 38, 606−631.
(2) For some recent reviews of C−H amination based on nitrene,
see: (a) Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40,
1926−1936. (b) Davies, H. M. L.; Manning, J. R. Nature 2008, 451,
417−424. (c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem.,
́
Int. Ed. 2012, 51, 8960−9009. (d) Díaz-Requejo, M. M.; Perez, P. J.
Chem. Rev. 2008, 108, 3379−3394. (e) Che, C.-M.; Lo, V. K.-Y.; Zhou,
C.-Y.; Huang, J.-S. Chem. Soc. Rev. 2011, 40, 1950−1975.
Based on our experimental results and previous reports,6 a
possible mechanism is depicted in Scheme 4. First, benzyl
Scheme 4. Proposed Mechanism
(3) Representative C−H amination based on nitrene: (a) Albone, D.
P.; Challenger, S.; Derrick, A. M.; Fillery, S. M.; Irwin, J. L.; Parsons,
C. M.; Takada, H.; Taylor, P. C.; Wilson, D. J. Org. Biomol. Chem.
2005, 3, 107−111. (b) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem.
Soc. 2005, 127, 14198−14199. (c) Fructos, M. R.; Trofimenko, S.;
́
Díaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2006, 128, 11784−
11791. (d) Lebel, H.; Huard, K. Org. Lett. 2007, 9, 639−642.
(e) Bhuyan, R.; Nicholas, K. M. Org. Lett. 2007, 9, 3957−3959.
(f) Badiei, Y. M.; Dinescu, A.; Dai, X.; Palomino, R. M.; Heinemann,
F. W.; Cundari, T. R.; Warren, T. H. Angew. Chem., Int. Ed. 2008, 47,
9961−9964. (g) Paradine, S. M.; White, M. C. J. Am. Chem. Soc. 2012,
134, 2036−2039. (h) Liu, Y.; Guan, X.; Wong, E. L.-M.; Liu, P.;
Huang, J.-S.; Che, C.-M. J. Am. Chem. Soc. 2013, 135, 7194−7204.
(4) Representative intramolecular aminations: (a) Yang, M.; Su, B.;
Wang, Y.; Chen, K.; Jiang, X.; Zhang, Y.-F.; Zhang, X.-S.; Chen, G.;
Cheng, Y.; Cao, Z.; Guo, Q.-Y.; Wang, L.; Shi, Z.-J. Nat. Commun.
2014, 5, 4707−4712. (b) Yang, M.; Jiang, X.; Shi, Z.-J. Org. Chem.
Front. 2015, 2, 51−54. (c) Zhu, C.; Liang, Y.; Hong, X.; Sun, H.; Sun,
W.-Y.; Houk, K. N.; Shi, Z. J. Am. Chem. Soc. 2015, 137, 7564−7567.
(d) Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894−1897. (e) Verma, A.;
Patel, S.; Meenakshi; Kumar, A.; Yadav, A.; Kumar, S.; Jana, S.;
Sharma, S.; Prasad, C. D.; Kumar, S. Chem. Commun. 2015, 51, 1371−
1374.
(5) Intermolecular aminations: (a) Pelletier, G.; Powell, D. A. Org.
Lett. 2006, 8, 6031−6034. (b) Wang, Z.; Zhang, Y.; Fu, H.; Jiang, Y.;
Zhao, Y. Org. Lett. 2008, 10, 1863−1866. (c) Liu, X.; Zhang, Y.; Wang,
L.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2008, 73, 6207−6212.
(d) Fan, R.; Li, W.; Pu, D.; Zhang, L. Org. Lett. 2009, 11, 1425−1428.
(e) Ye, Y.-H.; Zhang, J.; Wang, G.; Chen, S.-Y.; Yu, X.-Q. Tetrahedron
2011, 67, 4649−4654. (f) Ramesh, D.; Ramulu, U.; Mukkanti, K.;
Venkateswarlu, Y. Tetrahedron Lett. 2012, 53, 2904−2908. (g) Cheng,
Y.; Dong, W.; Wang, L.; Parthasarathy, K.; Bolm, C. Org. Lett. 2014,
radical B is formed by abstracting hydrogen from toluene by A,
which is generated from DTBP under heating with the aid of
[Cu]I and base.7 DTBP works with [Cu]I to give the copper(II)
alkoxide C. Metathesis of C with benzamide regenerates
intermediate D, which combined with the benzyl radical B to
give the desired product 3a with release of [Cu]I.
In conclusion, we have developed a copper-catalyzed
amidation of primary benzylic hydrocarbons and inactive
aliphatic alkanes. This method is ligand-free and promoted
with an extremely low amount of base. Aromatic and aliphatic
amides, sulfonamides, and imides are suitable substrates for this
transformation to afford desired coupling products in moderate
to good yields. Further investigations into the mechanistic
C
Org. Lett. XXXX, XXX, XXX−XXX