Organic Letters
Letter
thioamides16 are ubiquitous in biologically active molecules and
have also been used as building blocks for biologically relevant
heterocyclic scaffolds. It is noteworthy that the amine moiety in
thioamide 4b comes from DMF.17
As shown in Scheme 4, (E)-1,2-dideuterioalkene was formed
in 73% yield when Na2S·9H2O was replaced by K2S and D2O.
It indicated that water acted as the hydrogen donor in the
transformation.
Narsihmulu, C.; Chandrashekar, G.; Shyamsunder, T. Tetrahedron
Lett. 2004, 45, 2421.
(4) For selected examples of recent Z-selective semihydrogenations,
see: (a) Gianetti, T. L.; Tomson, N. C.; Arnold, J.; Bergman, R. G. J.
Am. Chem. Soc. 2011, 133, 14904. (b) Yan, M.; Jin, T.; Ishikawa, Y.;
Minato, T.; Fujita, T.; Chen, L.-Y.; Bao, M.; Asao, N.; Chen, M.-W.;
Yamamoto, Y. J. Am. Chem. Soc. 2012, 134, 17536. (c) Whittaker, A.
M.; Lalic, G. Org. Lett. 2013, 15, 1112. (d) Li, J.; Hua, R.; Liu, T. J.
Org. Chem. 2010, 75, 2966. (e) Drost, R. M.; Bouwens, T.; van Leest,
N. P.; de Bruin, B.; Elsevier, C. J. ACS Catal. 2014, 4, 1349. (f) van
Laren, M. W.; Elsevier, C. J. Angew. Chem., Int. Ed. 1999, 38, 3715.
(g) Hauwert, P.; Maestri, G.; Sprengers, J. W.; Catellani, M.; Elsevier,
C. J. Angew. Chem., Int. Ed. 2008, 47, 3223. (h) La Pierre, H. S.;
Arnold, J.; Toste, F. D. Angew. Chem., Int. Ed. 2011, 50, 3900.
(i) Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.;
Jitsukawa, K.; Kaneda, K. Angew. Chem., Int. Ed. 2013, 52, 1481.
(j) Semba, K.; Fujihara, T.; Xu, T.; Terao, J.; Tsuji, Y. Adv. Synth.
Catal. 2012, 354, 1542. (k) Sajiki, H.; Mori, S.; Ohkubo, T.; Ikawa, T.;
Kume, A.; Maegawa, T.; Monguchi, Y. Chem.Eur. J. 2008, 14, 5109.
(l) Belger, C.; Neisius, N. M.; Plietker, B. Chem.Eur. J. 2010, 16,
12214. (m) Enthaler, S.; Haberberger, M.; Irran, E. Chem.Asian J.
2011, 6, 1613.
(5) For selective review and examples, see: (a) Pasto, D. J. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 8, p 471. (b) Campbell, K. N.; Eby, L.
T. J. Am. Chem. Soc. 1941, 63, 216. (c) Campbell, K. N.; Eby, L. T. J.
Am. Chem. Soc. 1941, 63, 2683. (d) Henne, A. L.; Greenlee, K. W. J.
Am. Chem. Soc. 1943, 65, 2020. (e) Benkeser, R. A.; Schroll, G.; Sauve,
D. M. J. Am. Chem. Soc. 1955, 77, 3378.
(6) Burch, R. R.; Muetterties, E. L.; Teller, R. G.; Williams, J. M. J.
Am. Chem. Soc. 1982, 104, 4257.
(7) (a) Michaelides, I. N.; Dixon, D. J. Angew. Chem., Int. Ed. 2013,
Scheme 4. Investigation of the Hydrogen Source in the
Semihydrogenation Reaction
In summary, we developed a simple, efficient, and novel
transition-metal-free protocol for the formation of E-alkynes.
The semihydrogenation reaction was a highly stereoselective
reduction; only negligible amounts of Z-alkenes and over-
reduced alkanes were observed in GC−MS. The method
employed water as the hydrogen donor avoiding the use of a
potentially hazardous pressurized H2 atmosphere. Both
electron-donating and electron-withdrawing substitutions on
the aromatic ring were compatible under the standard
conditions. Importantly, the products with carbonyl, hydroxyl,
and amino groups can be utilized in several organic
transformations. Further studies to reveal the reaction
mechanism and extend the applications of this methodology
are currently underway in our labaratory.
52, 806. (b) Radkowshi, K.; Sundararaju, B.; Furstner, A. Angew.
̈
Chem., Int. Ed. 2013, 52, 355. (c) Li, J.; Hua, R. Chem.Eur. J. 2011,
17, 8462. (d) Cho, C. S.; Kim, D. T.; Shim, S. C. Bull. Korean Chem.
Soc. 2009, 30, 1931. (e) Trost, B. M.; Ball, Z. T.; Joge, T. J. Am. Chem.
Soc. 2002, 124, 7922.
̈
ASSOCIATED CONTENT
■
(8) (a) Shen, R.; Chen, T.; Zhao, Y.; Qiu, R.; Zhou, Y.; Yin, S.; Wang,
X.; Goto, M.; Han, L.-B. J. Am. Chem. Soc. 2011, 133, 17037. (b) Luo,
F.; Pan, C.; Wang, W.; Ye, Z.; Cheng, J. Tetrahedron 2010, 66, 1399.
(c) Shirakawa, E.; Otsuka, H.; Hayashi, T. Chem. Commun. 2005,
5885.
S
* Supporting Information
Typical experimental procedure and characterization for all
products. This material is available free of charge via the
(9) Tani, K.; Iseki, A.; Yamagata, T. Chem. Commun. 1999, 1821.
AUTHOR INFORMATION
Corresponding Authors
(10) Reyes-Sanchez, A.; Canavera-Buelvas, F.; Barrios-Francisco, R.;
́
̃
■
Cifuentes-Vaca, O. L.; Flores-Alamo, M.; García, J. J. Organometallics
2011, 30, 3340. (b) Chen, T.; Xiao, J.; Zhou, Y.; Yin, S.; Han, L.-B. J.
Organomet. Chem. 2014, 749, 51.
Notes
(11) Srimani, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D.
Angew. Chem., Int. Ed. 2013, 52, 14131.
́
́ ́
z, A.; Papai, I.; Nieger, M.; Leskela,
̈
(12) Chernichenko, K.; Madaras
M.; Repo, T. Nat. Chem. 2013, 5, 718.
The authors declare no competing financial interest.
(13) (a) Chen, Z.; Li, J.; Jiang, H.; Zhu, S.; Li, Y.; Qi, C. Org. Lett.
2010, 12, 3262. (b) Chen, Z.; Zeng, W.; Jiang, H.; Liu, L. Org. Lett.
2012, 14, 5385. (c) Chen, Z.; Jiang, H.; Wang, A.; Yang, S. J. Org.
Chem. 2010, 75, 6700. (d) Chen, Z.; Jiang, H.; Li, Y.; Qi, C. Chem.
Commun. 2010, 46, 8049. (e) Chen, Z.-W.; Jiang, H.-F.; Pan, X.-Y.;
He, Z.-J. Tetrahedron 2011, 67, 5920. (f) Chen, Z.-W.; Ye, D.-N.; Qian,
Y.-P.; Liu, L.-X. Tetrahedron 2013, 69, 6116. (g) Chen, Z.-W.; Ye, D.-
N.; Ye, M.; Zhou, Z.-G.; Li, S.-H.; Liu, L.-X. Tetrahedron Lett. 2014,
55, 1373.
ACKNOWLEDGMENTS
We thank the NSFC (21202023, 21162001, and 21161001) for
financial support.
■
REFERENCES
■
(1) (a) Kluwer, A. M.; Elsevier, C. J. In Handbook of Homogeneous
Hydrogenation; de Vries, J. G.; Elsevier, C. J., Eds.; Wiley-VCH:
Weinheim, 2007; Vol. 1, p 375. (b) Blaser, H.-U.; Schnyder, A.;
(14) For selective examples on decarboxylative reaction with alkynyl
carboxylic acids, see: (a) Li, X.; Yang, F.; Wu, Y.; Wu, Y. Org. Lett.
2014, 16, 992. (b) Priebbenow, D. L.; Becker, P.; Bolm, C. Org. Lett.
2013, 15, 6155. (c) Park, K.; Heo, Y.; Lee, S. Org. Lett. 2013, 15, 3322.
(d) Hwang, J.; Park, K.; Choe, J.; Min, H.; Song, K. H.; Lee, S. J. Org.
Chem. 2014, 79, 3267. (e) Huang, Z.; Shang, R.; Zhang, Z.-R.; Tan, X.-
D.; Fu, Y. J. Org. Chem. 2013, 78, 4551.
Steiner, H.; Rossler, F.; Baumeister, P. In Handbook of Heterogeneous
̈
Catalysis, 2nd ed.; Ertl, G., Knozinger, H., Schuth, F.,WeitKamp, J.,
̈
̈
Eds.; Wiley-VCH: Weinheim, 2008; Vol. 7, p 3284.
(2) (a) Oger, C.; Balas, L.; Durand, T.; Galano, J.-M. Chem. Rev.
2013, 13, 1313. (b) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.;
Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006, 49, 3033. (c) Nam,
N.-H. Curr. Med. Chem. 2003, 10, 1697.
(3) (a) Lindlar, H. Helv. Chim. Acta 1952, 35, 446. (b) Lindlar, H.;
(15) For selective examples of thiophene syntheses, see: (a) Grainger,
Dubuis, R. Org. Synth. 1966, 46, 89. (c) Chandrasekhar, S.;
R. S.; Patel, B.; Kariuki, B. M.; Male, L.; Spencer, N. J. Am. Chem. Soc.
C
dx.doi.org/10.1021/ol501137x | Org. Lett. XXXX, XXX, XXX−XXX