Journal of the American Chemical Society
Article
Tehranchi, J.; Cramer, C. J.; Sarangi, R.; Solomon, E. I.; Tolman, W. B.
J. Am. Chem. Soc. 2011, 133, 17602−17605. (c) Kunishita, A.;
Ishimaru, H.; Nakashima, S.; Ogura, T.; Itoh, S. J. Am. Chem. Soc.
2008, 130, 4244−4245. (d) Maiti, D.; Narducci Sarjeant, A. A.; Karlin,
K. D. Inorg. Chem. 2008, 47, 8736−8747.
(4) (a) Nakao, Y.; Hirao, K.; Taketsugu, T. J. Chem. Phys. 2001, 114,
7935−7940. (b) Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol.
2005, 9, 152−163. (c) Yoshizawa, K.; Kihara, N.; Kamachi, T.; Shiota,
Y. Inorg. Chem. 2006, 45, 3034−3041.
(5) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115−122.
(6) (a) Klinman, J. P. Chem. Rev. 1996, 96, 2541−2561. (b) Klinman,
J. P. J. Biol. Chem. 2006, 281, 3013−3016.
(7) (a) McGuirl, M. A.; Dooley, D. M. Curr. Opin. Chem. Biol. 1999,
3, 138−144. (b) Rokhsana, D.; Shepard, E. M.; Brown, D. E.; Dooley,
D. M. Amine Oxidase and Galactose Oxidase. In Copper−Oxygen
Chemistry; Itoh, S., Karlin, K. D., Eds.; John Wiley & Sons, Inc.:
Hoboken, NJ, 2011; Vol. 4; pp 53−106. (c) Humphreys, K. J.; Mirica,
L. M.; Wang, Y.; Klinman, J. P. J. Am. Chem. Soc. 2009, 131, 4657−
4663.
(27) Woertink, J. S.; Tian, L.; Maiti, D.; Lucas, H. R.; Himes, R. A.;
Karlin, K. D.; Neese, F.; Wurtele, C.; Holthausen, M. C.; Bill, E.;
̈
Sundermeyer, J.; Schindler, S.; Solomon, E. I. Inorg. Chem. 2010, 49,
9450−9459.
(28) Ginsbach, J. W.; Peterson, R. L.; Cowley, R. E.; Karlin, K. D.;
Solomon, E. I. Inorg. Chem. 2013, 52, 12872−12874.
(29) Lucas, H. R.; Meyer, G. J.; Karlin, K. D. J. Am. Chem. Soc. 2010,
132, 12927−12940.
(30) Peterson, R. L.; Himes, R. A.; Kotani, H.; Suenobu, T.; Tian, L.;
Siegler, M. A.; Solomon, E. I.; Fukuzumi, S.; Karlin, K. D. J. Am. Chem.
Soc. 2011, 133, 1702−1705.
(31) Bordwell, F. G.; Zhang, X.-M. J. Phys. Org. Chem. 1995, 8, 529−
535.
(32) Maiti, D.; Lee, D.-H.; Gaoutchenova, K.; Wurtele, C.;
̈
Holthausen, M. C.; Sarjeant, A. A. N.; Sundermeyer, J.; Schindler,
S.; Karlin, K. D. Angew. Chem., Int. Ed. 2008, 47, 82−85.
(33) It is only for the p-alkyl-DTBP cases that it was convenient to
take a large number of full spectra, as in Figure 3a, to follow the
kinetics. For all other cases, reactions which were much faster; only the
409 nm absorption value changes were monitored to deduce pseudo-
first-order rate constants.
(8) Liu, Y.; Mukherjee, A.; Nahumi, N.; Ozbil, M.; Brown, D.;
Angeles-Boza, A. M.; Dooley, D. M.; Prabhakar, R.; Roth, J. P. J. Phys.
Chem. B 2012, 117, 218−229.
(9) Evans, J. P.; Ahn, K.; Klinman, J. P. J. Biol. Chem. 2003, 278,
49691−49698.
(34) (a) Francisco, W. A.; Merkler, D. J.; Blackburn, N. J.; Klinman, J.
P. Biochemistry 1998, 37, 8244−8252. (b) Miller, S. M.; Klinman, J. P.
Biochemistry 1983, 22, 3091−3096.
(35) (a) Kunishita, A.; Kubo, M.; Sugimoto, H.; Ogura, T.; Sato, K.;
Takui, T.; Itoh, S. J. Am. Chem. Soc. 2009, 131, 2788−2789.
(b) Kunishita, A.; Ertem, M. Z.; Okubo, Y.; Tano, T.; Sugimoto, H.;
Ohkubo, K.; Fujieda, N.; Fukuzumi, S.; Cramer, C. J.; Itoh, S. Inorg.
Chem. 2012, 51, 9465−9480.
(36) Nemes, A.; Bakac, A. Inorg. Chem. 2001, 40, 746−749.
(37) Fukuzumi, S.; Shimoosako, K.; Suenobu, T.; Watanabe, Y. J. Am.
Chem. Soc. 2003, 125, 9074−9082.
(38) Pratt, D. A.; Dilabio, G. A.; Mulder, P.; Ingold, K. U. Acc. Chem.
Res. 2004, 37, 334−340.
(39) If the ET step is exergonic, this should occur first, followed by
rate-determining PT. In such a case, phenol radical cation derivatives
should be observed, but they were not. If an exergonic ET were the
rate-determining step, followed by rapid PT, no KIE would be
observed in contrast to our experimental observations. We further note
that [CuII(O2•−)]+ complex 2 is unreactive to the strong reductant
decamethylferrocene.
(40) (a) Matsumoto, T.; Ohkubo, K.; Honda, K.; Yazawa, A.;
Furutachi, H.; Fujinami, S.; Fukuzumi, S.; Suzuki, M. J. Am. Chem. Soc.
2009, 131, 9258−9267. (b) Marcus, R. A. J. Phys. Chem. 1966, 72, 891.
(41) (a) Guttenplan, J. B.; Cohen, S. G. J. Am. Chem. Soc. 1972, 94,
4040−4042. (b) Wagner, P. J.; Lam, H. M. H. J. Am. Chem. Soc. 1980,
102, 4167−4172.
(42) (a) Lockwood, M. A.; Blubaugh, T. J.; Collier, A. M.; Lovell, S.;
Mayer, J. M. Angew. Chem., Int. Ed. 1999, 38, 225−227. (b) Yiu, D. T.
Y.; Lee, M. F. W.; Lam, W. W. Y.; Lau, T.-C. Inorg. Chem. 2003, 42,
1225−1232. (c) Lansky, D. E.; Goldberg, D. P. Inorg. Chem. 2006, 45,
5119−5125. (d) Miyazaki, S.; Kojima, T.; Mayer, J. M.; Fukuzumi, S. J.
Am. Chem. Soc. 2009, 131, 11615−11624.
(10) (a) Chen, P.; Solomon, E. I. J. Am. Chem. Soc. 2004, 126, 4991−
5000. (b) Chen, P.; Bell, J.; Eipper, B. A.; Solomon, E. I. Biochemistry
2004, 43, 5735−5747.
(11) Prigge, S. T.; Eipper, B.; Mains, R.; Amzel, L. M. Science 2004,
304, 864−867.
(12) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010, 110,
6961−7001.
(13) Osako, T.; Ohkubo, K.; Taki, M.; Tachi, Y.; Fukuzumi, S.; Itoh,
S. J. Am. Chem. Soc. 2003, 125, 11027−11033.
(14) During the review of this present manuscript, Itoh and co-
workers reported on the “redox reactivity” of a [CuII(O2•−)]+ complex
first described in 2009.35 The complex with tridentate N3 ligand does
not oxidize phenols but only reacts with them in an acid−base fashion.
(15) Liang, H.-C.; Kim, E.; Incarvito, C. D.; Rheingold, A. L.; Karlin,
K. D. Inorg. Chem. 2002, 41, 2209−2212.
(16) Manner, V. W.; Markle, T. F.; Freudenthal, J. H.; Roth, J. P.;
Mayer, J. M. Chem. Commun. 2008, 256−258.
(17) Nishinaga, A.; Shimizu, T.; Matsuura, T. J. Org. Chem. 1979, 44,
2983−2988.
(18) Zhang, C. X.; Kaderli, S.; Costas, M.; Kim, E.-i.; Neuhold, Y.-M.;
Karlin, K. D.; Zuberbuhler, A. D. Inorg. Chem. 2003, 42, 1807−1824.
̈
(19) Fyfe, C. A.; Vanveen, L. J. Am. Chem. Soc. 1977, 99, 3366−3371.
(20) Omura, K. J. Org. Chem. 1996, 61, 7156−7161.
(21) Maiti, D.; Fry, H. C.; Woertink, J. S.; Vance, M. A.; Solomon, E.
I.; Karlin, K. D. J. Am. Chem. Soc. 2007, 129, 264−265.
(22) Kim, S.; Saracini, C.; Siegler, M. A.; Drichko, N.; Karlin, K. D.
Inorg. Chem. 2012, 51, 12603−12605.
(23) (a) Nash, T. Biochem. J. 1953, 55, 416−421. (b) Zhang, C. X.
Ph.D. Thesis, Synthetic analogues for copper metalloenzymes: effects
of ligand electronic and structural variations on the formation, stability
and reactivity of biomimetic copper-dioxygen adducts. The Johns
Hopkins University, Baltimore MD, 2001.
(43) (a) Kohen, A.; Klinman, J. P. Acc. Chem. Res. 1998, 31, 397−
404. (b) Kwart, H. Acc. Chem. Res. 1982, 15, 401−408.
(44) Francisco, W. A.; Knapp, M. J.; Blackburn, N. J.; Klinman, J. P. J.
Am. Chem. Soc. 2002, 124, 8194−8195.
(24) If higher concentrations of [(DMM-tmpa)CuII(O2•−)]+ (2) are
employed, 2 reacts with [(DMM-tmpa)CuI(CO)]+ (1), forming
dicopper(II) species; see Introduction (structure type E) and the
Experimental Section concerning the synthesis of 1 and the generation
of 2.
(45) (a) The smaller yield of H2O2 than expected from Scheme 4
may result from partial decomposition during the reaction. (b) The
DMM-tmpa ligand in Cu(II) reaction products remains intact (based
on direct TLC and MS analyses); no ligand oxidation occurred.
(46) In fact, we were not able to detect isobutylene as a product; see
the Experimental Section for details and explanation.
(47) (a) Wali, A.; Das, J.; Pillai, S. M.; Ravindranathan, M. Green
Chem. 2002, 4, 587−591. (b) Mandal, S.; Macikenas, D.; Protasiewicz,
J. D.; Sayre, L. M. J. Org. Chem. 2000, 65, 4804−4809. (c) Nishinaga,
A.; Itahara, T.; Shimizu, T.; Matsuura, T. J. Am. Chem. Soc. 1978, 100,
1820−1825. (d) Peters, A.; Trumm, C.; Reinmuth, M.; Emeljanenko,
D.; Kaifer, E.; Himmel, H.-J. Eur. J. Inorg. Chem. 2009, 2009, 3791−
(25) (a) Fujisawa, K.; Tanaka, M.; Morooka, Y.; Kitajima, N. J. Am.
Chem. Soc. 1994, 116, 12079−12080. (b) Chen, P.; Root, D. E.;
Campochiaro, C.; Fujisawa, K.; Solomon, E. I. J. Am. Chem. Soc. 2003,
125, 466−474.
(26) Wurtele, C.; Gaoutchenova, E.; Harms, K.; Holthausen, M. C.;
̈
Sundermeyer, J.; Schindler, S. Angew. Chem., Int. Ed. 2006, 45, 3867−
3869.
L
dx.doi.org/10.1021/ja503105b | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX