S. B. Kamptmann, R. Brückner
FULL PAPER
[11]
75, 421–425; b) A. B. Smith III, B. S. Freeze, M. J. LaMarche,
T. Hirose, I. Brouard, P. V. Rucker, M. Xian, K. F. Sun-
dermann, S. J. Shaw, M. A. Burlingame, S. B. Horwitz, D. C.
Myles, Org. Lett. 2005, 7, 311–314; c) J. A. Marshall, J. J. Saba-
tini, Org. Lett. 2005, 7, 4819–4822; d) S. Reymond, J. Cossy,
Eur. J. Org. Chem. 2006, 4800–4804; e) A. Dánnibale, L. Ciar-
alli, M. Bassetti, C. Pasquini, J. Org. Chem. 2007, 72, 6067–
6074; f) E. Roulland, Angew. Chem. 2008, 120, 3822–3825; An-
gew. Chem. Int. Ed. 2008, 47, 3762–3765; g) G. W. O’Neil, M. J.
Black, Synlett 2010, 1, 107–110; for reviews on the syntheses
of heterocycles by ring-closing metathesis reactions, see: h) A.
Deiters, S. F. Martin, Chem. Rev. 2004, 104, 2199–2238; i) K. C.
Majumdar, B. Chattopadhyay, K. Ray, Curr. Org. Synth. 2010,
7, 153–176.
Compound 13 has been reported previously in the literature; it
was synthesized in situ likewise, but neither isolated nor charac-
terized because of its sensitivity. The synthesis and one reaction
of 13 can be found in: a) A. I. Meyers, D. M. Roland, D. L.
Comins, R. Henning, M. P. Fleming, K. Shimizu, J. Am. Chem.
Soc. 1979, 101, 4732–4734; b) A. I. Meyers, K. A. Babiak,
A. L. Campbell, D. L. Comins, M. P. Fleming, R. Henning, M.
Heuschmann, J. P. Hudspeth, J. M. Kane, P. J. Reider, D. M.
Roland, K. Shimizu, K. Tomioka, R. D. Walkup, J. Am. Chem.
Soc. 1983, 105, 5015–5024.
For pertinent reviews, see: a) O. Reiser, Angew. Chem. Chem.
Unserer Zeit 2001, 35, 94–100; b) A. Suzuki, Angew. Chem.
2011, 123, 6855–6869; Angew. Chem. Int. Ed. 2011, 50, 6723–
6737; c) E.-i. Negishi, Angew. Chem. 2011, 123, 6870–6897; An-
gew. Chem. Int. Ed. 2011, 50, 6738–6764; d) C. C. C. Johans-
son Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, An-
gew. Chem. 2012, 124, 5150–5174; Angew. Chem. Int. Ed. 2012,
51, 5062–5085; see also: e) C. C. C. Johansson Seechurn, M. O.
Kitching, T. J. Colacot, V. Snieckus, Chem. Soc. Rev. 2011, 10,
4877–5208 (cross-coupling reactions in organic synthesis,
themed issue).
For examples, see: a) P. Wipf, P. D. G. Coish, J. Org. Chem.
1999, 64, 5053–5061; b) M. J. Remuiñán, G. Pattenden, Tetra-
hedron Lett. 2000, 41, 7367–7371; c) M. F. Jacobsen, J. E. Mo-
ses, R. M. Adlington, J. E. Baldwin, Tetrahedron 2006, 62,
1675–1689; d) J. Burghart, R. Brückner, Angew. Chem. 2008,
120, 7777–7782; Angew. Chem. Int. Ed. 2008, 47, 7664–7668;
e) S. J. Lee, K. C. Gray, J. S. Paek, M. D. Burke, J. Am. Chem.
Soc. 2008, 130, 466–468; f) J. Burghart, R. Brückner, Eur. J.
Org. Chem. 2011, 150–165.
a) D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636–
3638; b) For a review, see: J. K. Stille, Angew. Chem. 1986, 98,
504–519; Angew. Chem. Int. Ed. Engl. 1986, 25, 508–524.
For examples of the selective tosylation of Cprim–OH of a 1,2,4-
triol and subsequent epoxide formation, see: a) Z.-B. Zhen, J.
Gao, Y. Wu, J. Org. Chem. 2008, 73, 7310–7316; b) K. Murata,
T. Toba, K. Nakanishi, B. Takahashi, T. Yamamura, S. Miyake,
H. Annoura, J. Org. Chem. 2005, 70, 2398–2401; c) P. J. Koci-
enski, C. Yeates, S. D. A. Street, S. F. Campbell, J. Chem. Soc.,
Perkin Trans. 1 1987, 2183–2184; d) A. J. Boydell, M. J. Jeffery,
E. Bürkstümmer, B. Linclau, J. Org. Chem. 2003, 68, 8252–
8255; e) C. Greck, P. Grice, S. V. Ley, A. Wonnacott, Tetrahe-
dron Lett. 1986, 27, 5277–5280; f) A. B. Dounay, G. J. Florence,
A. Saito, C. J. Forsyth, Tetrahedron 2002, 58, 1865–1874; g) W.
Szeja, Carbohydr. Res. 1986, 158, 245–248.
a) K. Tamao, T. Kakui, M. Kumada, J. Am. Chem. Soc. 1978,
100, 2268–2269; b) K. Tamao, N. Ishida, M. Kumada, J. Org.
Chem. 1983, 48, 2120–2122; c) K. Tamao, N. Ishida, T. Tanaka,
M. Kumada, Organometallics 1983, 2, 1694–1696; d) K. Ta-
mao, N. Ishida, J. Organomet. Chem. 1984, 269, C37–C39.
a) I. Fleming, R. Henning, H. Plaut, J. Chem. Soc., Chem.
Commun. 1984, 29–31; b) I. Fleming, J. H. M. Hill, D. Parker,
D. Waterson, J. Chem. Soc., Chem. Commun. 1985, 318–321;
c) I. Fleming, P. E. J. Sanderson, Tetrahedron Lett. 1987, 28,
4229–4232.
For reviews on the use of silyl groups as masked hydroxy
groups, see: a) ref.[16a] (use of PhMe2Si groups); b) I. Fleming,
R. Henning, D. C. Parker, H. E. Plaut, P. E. J. Sanderson, J.
Chem. Soc., Perkin Trans. 1 1995, 317–337; c) G. R. Jones, Y.
Landais, Tetrahedron 1996, 52, 7599–7662; d) I. Fleming, A.
Barbero, D. Walter, Chem. Rev. 1997, 97, 2063–2192 (chapter
IV).
For recent examples of the use of silyl groups as masked hy-
droxy groups in synthesis, see: a) G. A. Molander, P. J. Nichols,
J. Org. Chem. 1996, 61, 6040–6043; b) R. Verma, S. K. Ghosh,
J. Chem. Soc., Perkin Trans. 1 1999, 265–270; c) A. G. M. Bar-
rett, J. Head, M. L. Smith, N. S. Stock, A. J. P. White, D. J. Wil-
liams, J. Org. Chem. 1999, 64, 6005–6018; d) B. M. Stoltz, T.
Kano, E. J. Corey, J. Am. Chem. Soc. 2000, 122, 9044–9045; e)
N. Hanaki, J. T. Link, D. W. C. MacMillan, L. E. Overman,
W. G. Trankle, J. A. Wurster, Org. Lett. 2000, 2, 223–226; f)
F. B. Boulineau, A. Wie, Org. Lett. 2002, 4, 2281–2283; g)
M. E. Jung, G. Piizi, J. Org. Chem. 2003, 68, 2572–2582.
S. Anklam, Ph.D. Dissertation, University of Freiburg, Ger-
many, 2003.
[12]
[22]
[13]
[14]
[23]
[24]
For the synthetic procedure, see: H. C. Brown, J. V. N. V. Pra-
sad, S.-H. Zee, J. Org. Chem. 1986, 51, 432–439.
For examples of enantioselective Brown allylations of α,β-un-
saturated aldehydes, see: a) K. C. Nicolaou, D. Hepworth,
M. R. V. Finlay, N. P. King, B. Werschkun, A. Bigot, Chem.
Commun. 1999, 519–520; b) M. V. R. Reddy, H. C. Brown, P. V.
Ramachandran, J. Organomet. Chem. 2001, 624, 239–243; c) J.
Gagnepain, E. Moulin, A. Fürstner, Chem. Eur. J. 2011, 17,
6964–6972; d) P. Nuhant, J. Kister, R. Lira, A. Sorg, W. R.
Roush, Tetrahedron 2011, 67, 6497–6512.
For the synthetic procedure, see: C. H. Burgos, E. Canales, K.
Matos, J. A. Soderquist, J. Am. Chem. Soc. 2005, 127, 8044–
8049.
Enantioselective Soderquist allylations of α,β-unsaturated alde-
hydes have not been reported until now. However, a diastereo-
selective Soderquist allylation of a chiral α,β-unsaturated alde-
hyde has been published recently (ds = 5:1), see: C. E. Stivala,
Z. Gu, L. L. Smith, A. Zakarian, Org. Lett. 2012, 14, 804–807.
Z.-X. Jiang, Y.-Y. Qin, F.-L. Qing, J. Org. Chem. 2003, 68,
7544–7547.
For examples of ring-closing metathesis reactions besides
C=C–Br with the Grubbs I or Grubbs II catalyst, see: a) V. B.
Birman, V. H. Rawal, J. Org. Chem. 1998, 63, 9146–9147; b)
Y. K. Reddy, J. R. Falck, Org. Lett. 2002, 4, 969–971; c) J. A.
McCubbin, M. L. Maddness, M. Lautens, Org. Lett. 2006, 8,
2993–2996; d) M. L. Bennasar, E. Zulaica, D. Solé, S. Alonso,
Synlett 2008, 5, 667–670; e) A. Gollner, K.-H. Altmann, J.
Gertsch, J. Mulzer, Chem. Eur. J. 2009, 15, 5979–5997; f) S. K.
Ginotra, J. A. Friest, D. B. Berkowitz, Org. Lett. 2012, 14, 968–
971.
For examples of cross-metathesis reactions besides C=C–Br
with the Grubbs I or Grubbs II catalyst, see: a) T. W. Funk, J.
Efskind, R. H. Grubbs, Org. Lett. 2005, 7, 187–190; b) C. V.
Krishna, V. R. Bhonde, A. Devendar, S. Maitra, K. Mukkanti,
J. Iqbal, Tetrahedron Lett. 2008, 49, 2013–2017.
[25]
[26]
[15]
[16]
[17]
[27]
[28]
[18]
[29]
[30]
[31]
Grubbs I catalyst = bis(tricyclohexylphosphane)benzyl-
ideneruthenium(IV) dichloride.
Grubbs II catalyst = [1,3-bis(2,4,6-trimethylphenyl)-2-imid-
azolidinylidene]dichloro(phenylmethylene)(tricyclohexylphos-
phane)ruthenium.
Grubbs II catalyst was synthesized according to: A. P. Blum,
T. Ritter, R. H. Grubbs, Organometallics 2007, 26, 2122–2124.
The ratio of (E)-17 and (Z)-17 was determined to be E:Z =
73:27 by 1H NMR spectroscopy and 1H-coupled edHSQC. See
the Exp. Sect. for further details.
[19]
[20]
[21]
[32]
[33]
S. Müller, Ph.D. Dissertation, University of Freiburg, Germany,
2007.
For examples of the synthesis of α,β-unsaturated δ-lactones by
ring-closing metathesis reactions, see: a) A. K. Chatterjee, F. D.
Toste, S. D. Goldberg, R. H. Grubbs, Pure Appl. Chem. 2003,
[34]
B. Schmidt, D. Geiβler, ChemCatChem 2010, 2, 423–429.
6598
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 6584–6600