Organic & Biomolecular Chemistry
Communication
The precise interactions that lead to asymmetric induction,
and in particular the significant disparity between the enantio-
selectivities obtained with aromatic versus aliphatic aldehydes,
remain unclear. Investigation of these interactions, and devel-
opment of new catalysts designed to exploit them, may there-
fore be a fruitful area for further research.
4 B.-L. Lei, C.-H. Ding, X.-F. Yang, X.-L. Wan and X.-L. Hou,
J. Am. Chem. Soc., 2009, 131, 18250–18251.
5 R. Shintani, T. Yamagami, T. Kimura and T. Hayashi, Org.
Lett., 2005, 7, 5317–5319.
6 H. Zheng, Q. Liu, S. Wen, H. Yang and Y. Luo, Tetrahedron:
Asymmetry, 2013, 24, 875–882.
7 X. Xiao, X. Liu, S. Dong, Y. Cai, L. Lin and X. Feng, Chem. –
Eur. J., 2012, 18, 15922–15926.
8 K. Kanagaraj and K. Pitchumani, J. Org. Chem., 2013, 78,
744–751.
Conclusions
In summary, we have developed a tandem synthesis of medi-
9 X. Liu and Y. Lu, Org. Lett., 2010, 12, 5592–5595.
cinally-relevant 2-alkyl and 2-aryl dihydroquinolones from 10 E. E. Maciver, S. Thompson and M. D. Smith, Angew.
simple substituted anilines and commercially-available alde- Chem., Int. Ed., 2009, 48, 9979–9982.
hydes. The process is mediated by a chiral copper(II) Lewis 11 E. E. Maciver, P. C. Knipe, A. P. Cridland, A. L. Thompson
acid catalyst derived from BINOL. Although all reactions pro- and M. D. Smith, Chem. Sci., 2012, 3, 537–540.
ceeded with complete diastereoselectivity at low catalyst 12 Y.-Y. Yang, W.-G. Shou and Y.-G. Wang, Tetrahedron, 2006,
loading (and unusually, bulky aliphatic aldehydes were the 62, 10079–10086.
most efficient and selective reaction partners), enantioselectivi- 13 Q.-X. Guo, H. Liu, C. Guo, S.-W. Luo, Y. Gu and L.-Z. Gong,
ties are merely modest (at up to 90 : 10 e.r.). However, this J. Am. Chem. Soc., 2007, 129, 3790–3791.
mode of reaction bodes well for the application of joint metal 14 J. Zhou, Chem. – Asian J., 2010, 5, 422–434.
and Brønsted acid catalysis in the synthesis of complex 15 M. Rueping, A. P. Antonchick and C. Brinkmann, Angew.
heterocycles.
Chem., Int. Ed., 2007, 46, 6903–6906.
16 P. de Armas, D. Tejedor and F. García-Tellado, Angew.
Chem., Int. Ed., 2010, 49, 1013–1016.
17 Z. Shao and H. Zhang, Chem. Soc. Rev., 2009, 38, 2745–
2755.
18 J. Lacour and D. Moraleda, Chem. Commun., 2009, 7073–
7089.
19 M. Rueping, R. M. Koenigs and I. Atodiresei, Chem. – Eur.
J., 2010, 16, 9350–9365.
20 A. Parra, S. Reboredo, A. M. Martín Castro and J. Alemán,
Org. Biomol. Chem., 2012, 10, 5001–5020.
21 D. Nakashima and H. Yamamoto, J. Am. Chem. Soc., 2006,
128, 9626–9627.
Acknowledgements
The European Research Council has provided financial
support under the European Community’s Seventh Framework
Programme (FP7/2007–2013)/ERC grant agreement no. 259056.
Thanks to Dr Barbara Odell and Dr Russell W. Driver for assist-
ance with NMR and X-ray crystallography respectively.
References
22 M. Klussmann, L. Ratjen, S. Hoffmann, V. Wakchaure,
R. Goddard and B. List, Synlett, 2010, 2189–2192.
23 G. L. Hamilton, E. J. Kang, M. Mba and F. D. Toste, Science,
2007, 317, 496–499.
‡The X-ray data for 12 have been deposited in the Cambridge Crystallographic
Data Centre (CCDC 984645).
§Relative stereochemistry tentatively assigned.
1 Y. Xia, Z. Y. Yang, P. Xia, K. F. Bastow, Y. Tachibana, 24 V. Rauniyar, Z. J. Wang, H. E. Burks and F. D. Toste, J. Am.
S. C. Kuo, E. Hamel, T. Hackl and K. H. Lee, J. Med. Chem.,
1998, 41, 1155–1162.
2 S.-X. Zhang, J. Feng, S.-C. Kuo, A. Brossi, E. Hamel,
A. Tropsha and K.-H. Lee, J. Med. Chem., 2000, 43, 167–176.
Chem. Soc., 2011, 133, 8486–8489.
25 It is also possible that imine formation occurs
subsequently to the generation of the copper
enolate.
3 A. E. Nibbs and K. A. Scheidt, Eur. J. Org. Chem., 2012, 26 R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 1965,
449–462.
87, 395–397.
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 5094–5097 | 5097