2704
N. W. J. T. Heinsman et al. / Tetrahedron: Asymmetry 14 (2003) 2699–2704
4.6. Characterisation of CALB beads
2. Klibanov, A. M. Acc. Chem. Res. 1990, 23, 114–120.
3. Wescott, C. R.; Klibanov, A. M. Biochim. Biophys. Acta
1994, 1206, 1–9.
4. Koskinen, A. M. P.; Klibanov, A. M. Enzymatic Reactions
in Organic Media, 1st ed.; Blackie Academic & Profes-
sional: Glasgow, UK, 1996.
5. Faber, K. In Biotransformations in Organic Chemistry, 4th
ed.; Faber, K., Springer Verlag: Berlin, Heidelberg, 2000;
pp. 29–176.
4.6.1. Weight. The mean weight of one enzyme bead
was determined by weighing 5 series of 10 beads and
taking the average. One bead of Novozym 435® (C.
antarctica lipase B, CALB) did have an average weight
of 5.4×10−2 1.0×10−2 mg and so 1 g of Novozym 435®
thus contained 18500 2900 beads.
6. Engel, K.-H. Tetrahedron: Asymmetry 1991, 2, 165–168.
7. Berglund, P.; Vo¨rde, C.; Ho¨gberg, H.-E. Biocatalysis 1994,
9, 123–130.
8. Anderson, E. M.; Larsson, K. M.; Kirk, O. Biocatal.
Biotransform. 1998, 16, 181–204.
9. Duan, G.; Ching, C. B. Biochem. Eng. J. 1998, 2, 237–245.
10. Nguyen, B.-V.; Hedenstro¨m, E. Tetrahedron: Asymmetry
1999, 10, 1821–1826.
4.6.2. Diameter and volume. Approximately 300 ‘dry’
CALB beads, 300 CALB beads soaked in 4-methyloc-
tanoic acid and 300 CALB beads soaked in 4-methyloc-
tanoic acid ethyl ester were scanned. For each bead the
diameter was determined using the program RESULTS
from Applied Imaging, version 5.1, 1991.
The Sauter mean diameter was calculated using:
11. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am.
Chem. Soc. 1982, 104, 7294–7299.
12. Chen, C.-S.; Wu, S.-H.; Girdaukas, G.; Sih, C. J. J. Am.
Chem. Soc. 1987, 109, 2812–2817.
13. Jongejan, J. A.; van Tol, J. B. A.; Geerlof, A.; Duine, J.
A. Recl. Trav. Chim. Pays-Bas 1991, 110, 247–254.
14. Rakels, J. L. L.; Romein, B.; Straathof, A. J. J.; Heijnen,
J. J. Biotechnol. Bioeng. 1994, 43, 411–422.
%ni·d3i
d32=
(1)
%ni·d2i
The mean volume was calculated using:
n
1
4
15. Rakels, J. L. L.; Straathof, A. J. J.; Heijnen, J. J. Enzyme
V=
%
k=1 3
y·r3k
(2)
n
Microb. Technol. 1993, 15, 1051–1056.
16. Straathof, A. J. J.; Jongejan, J. A. Enzyme Microb Technol.
1997, 21, 559–571.
17. Heinsman, N. W. J. T.; Orrenius, S. C.; Marcelis, C. L. M.;
de Sousa Teixeira, A.; Franssen, M. C. R.; van der Padt,
A.; Jongejan, J. A.; de Groot, Ae. Biocatal. Biotransform.
1998, 16, 145–162.
18. Heinsman, N. W. J. T.; Teixeira, A.; van der Weide, P. L.
J.; Franssen, M. C. R.; van der Padt, A.; de Groot, Ae.
Biocatal. Biotransform. 2001, 19, 181–189.
19. Heinsman, N. W. J. T.; Valente, A. M.; Smienk, H. G. F.;
van der Padt, A.; Franssen, M. C. R.; de Groot, Ae.; van’t
Riet, K. Biotechnol. Bioeng. 2001, 76, 193–199.
20. Andreopoulos, A. G. Biomaterials 1989, 10, 101–104.
21. Sadler, G. D.; Braddock, R. J. J. Food Sci. 1990, 55,
587–588.
22. Charara, Z. N.; Williams, J. W.; Schmidt, R. H.; Marshall,
M. R. J. Food Sci. 1992, 57, 963–972.
23. Chen, X.; Martin, B. D.; Neubauer, T. K.; Linhardt, R.
J.; Dordick, J. S.; Rethwisch, D. G. Carbohydr. Polym.
1995, 28, 15–21.
24. Johansson, F.; Leufve´n, A. J. Food Sci. 1997, 62, 355–358.
25. Martin, B. D.; Linhardt, R. J.; Dordick, J. S. Biomaterials
1998, 19, 69–76.
26. Tramper, J.; Vermue¨, M. H.; Beeftink, H. H.; von Stockar,
U. Biocatalysis in Non-conventional Media; Elsevier:
Amsterdam, The Netherlands, 1992.
with n=390 (dry CALB beads), 305 (CALB beads
saturated with 4-methyloctanoic acid) and 381 (CALB
beads saturated with 4-methyloctanoic acid ethyl ester).
4.6.3. Rate of swelling. The swelling of enzyme beads
was recorded on videotape. To one bead, viewed under
the microscope, a drop of 4-methyloctanoic acid was
added. The swelling was recorded in time. The volume
was calculated in time using Eq. (2).
4.7. Determination of E values
For the esterification of 4-methyloctanoic acid with
ethanol, the enantiomeric ratio was determined solely
using enantiomeric excess data of the substrate and the
extent of conversion. This was necessary because of the
poor separation of the 4-methyloctanoic acid ethyl ester
enantiomers on the GC. Plotting the ees versus the
conversion in the computer program SIMFIT13 gave
the enantiomeric ratio.
To determine the peak areas of the 4-methyloctanoic
acid enantiomers at t0, a sample was taken from the
mixture in the absence of lipase. In case of substrate
sorption, the initial amount of 4-methyloctanoic acid
(mol/g) was different from the one determined by GC
at t0. Therefore, the conversions that were calculated
from the GC data at time t and t0 were corrected for
4-methyloctanoic acid (mol/g) sorbed into the enzyme
beads. Plotting the ees versus the conversion in the
SIMFIT program13 gave new E values.
27. Berglund, P.; Holmquist, M.; Hult, K.; Ho¨gberg, H.-E.
Biotechnol. Lett. 1995, 17, 55–60.
28. Edlund, H.; Berglund, P.; Jensen, M.; Hedenstro¨m, E.;
Ho¨gberg, H.-E. Acta Chem. Scand. 1996, 50, 666–671.
29. Wehtje, E.; Costes, D.; Adlercreutz, P. J. Mol. Catal. B:
Enzymatic 1997, 3, 221–230.
30. Berglund, P.; Holmquist, M.; Hult, K.; Ho¨gberg, H.-E.
Biotechnol. Lett. 1995, 17, 55–60.
31. Anderson, E. M.; Larsson, K. M.; Kirk, O. Biocatal.
Biotransform. 1998, 16, 181–204.
References
32. Heinsman, N.; Belov, Y. The Reporter 1997, 16, 9.
1. Arnold, F. H. TIBTECH 1990, 8, 244–249.