Paper
Organic & Biomolecular Chemistry
Angew. Chem., Int. Ed., 2010, 49, 4612; (f) J. W. Yang, 28 (a) D. E. Schwarz, T. M. Cameron, P. J. Hay, B. L. Scott,
F. M. T. Hechavarria and B. List, Angew. Chem., Int. Ed.,
2004, 43, 6660; (g) J.-W. Yang, F. M. T. Hechavarria,
N. Vignola and B. List, Angew. Chem., Int. Ed., 2005, 44,
W. Tumas and D. L. Thorn, Chem. Commun., 2005, 5919;
(b) D. Zhang, L.-Z. Wu, L. Zhou, Q.-Z. Yang, L.-P. Zhang
and C.-H. Tung, J. Am. Chem. Soc., 2004, 126, 3440.
108; (h) N. J. A. Martin, X. Cheng and B. List, J. Am. Chem. 29 (a) X.-Y. Zhao and L.-Q. Ma, Int. J. Hydrogen Energy, 2009,
Soc., 2008, 130, 13862; (i) J. W. Yang and B. List, Org. Lett.,
2006, 8, 5653; ( j) N. J. A. Martin, L. Ozores and B. List,
J. Am. Chem. Soc., 2007, 129, 8976.
34, 4788; (b) T. K. Nielsen, F. Besenbacher and T. R. Jensen,
Nanoscale, 2011, 3, 2086; (c) J. Nam and J. Ko, Appl. Energy,
2012, 89, 164.
20 (a) M. Rueping, E. Sugiono, C. Azap, T. Theissmann and 30 (a) F.-S. Yang, G.-X. Wang, Z.-X. Zhang, X.-Y. Meng and
M. Bolte, Org. Lett., 2005, 7, 3781; (b) M. Rueping,
A. P. Antonchick and T. Theissmann, Angew. Chem., Int.
Ed., 2006, 45, 3683; (c) M. Rueping, A. P. Antonchick and
V. Rudolph, Int. J. Hydrogen Energy, 2010, 35, 3832;
(b) P. Muthukumar and M. Groll, Int. J. Hydrogen Energy,
2010, 35, 3817.
T. Theissmann, Angew. Chem., Int. Ed., 2006, 45, 6751; 31 For the hydride transfer reactions with the type of XH +
(d) M. Rueping and A. P. Antonchick, Angew. Chem., Int.
Ed., 2007, 46, 4562; (e) M. Rueping, C. Brinkmann,
A. P. Antonchick and I. Atodiresei, Org. Lett., 2010, 12,
4604; (f) M. Rueping, E. Merino and R. M. Koenigs, Adv.
Y+ → X+ + YH in acetonitrile, the free energy change of the
reaction was identified in our lab to be equal to or quite
close to the corresponding reaction heats in acetonitrile
(see ESI†).
Synth. Catal., 2010, 352, 2629; (g) M. Rueping, J. Dufour 32 (a) X.-Z. Han, W.-F. Hao, X.-Q. Zhu and V. D. Parker, J. Org.
and F. R. Schoepke, Green Chem., 2011, 13, 1084.
Chem., 2012, 77, 6520; (b) X.-Q. Zhu, X.-T. Li and Y.-Y. Mu,
J. Org. Chem., 2012, 77, 4774; (c) X.-Q. Zhu, Y.-Y. Mu and
X.-T. Li, J. Phys. Chem. B, 2011, 115, 14794; (d) X.-Q. Zhu,
J. Zhou and X.-T. Li, J. Phys. Chem. B, 2011, 115, 3588.
21 (a) T. B. Nguyen, H. Bousserouel, Q. Wang and F. Guéritte,
Org. Lett., 2010, 12, 4705; (b) T. B. Nguyen, H. Bousserouel,
Q. Wang and F. Guéritte, Adv. Synth. Catal., 2011, 353, 257;
(c) T. B. Nguyen, Q. Wang and F. Guéritte, Chem.–Eur. J., 33 X.-Q. Zhu, M.-T. Zhang, A. Yu, C.-H. Wang and J.-P. Cheng,
2011, 17, 9576. J. Am. Chem. Soc., 2008, 130, 2501.
22 (a) C. Zheng and S.-L. You, Chem. Soc. Rev., 2012, 41, 2498; 34 (a) X.-Q. Zhu, Y. Yang, M. Zhang and J.-P. Cheng, J. Am.
(b) Q. Kang, Z.-A. Zhao and S.-L. You, Org. Lett., 2008, 10,
2031; (c) X.-Y. Liu and C.-M. Che, Org. Lett., 2009, 11, 4204;
(d) Q. Kang, Z.-A. Zhao and S.-L. You, Adv. Synth. Catal.,
2007, 349, 1657.
Chem. Soc., 2003, 125, 15298; (b) X.-Q. Zhu, Y. Yang,
M. Zhang and J.-P. Cheng, J. Am. Chem. Soc., 2004, 126,
6833.
35 (a) X.-Q. Zhu, H.-R. Li, Q. Li, T. Ai, J.-Y. Lu, Y. Yang and
J.-P. Cheng, Chem.–Eur. J., 2003, 9, 871; (b) X.-Q. Zhu,
Y. Tan and C.-T. Cao, J. Phys. Chem. B, 2010, 114, 2058;
(c) X.-Q. Zhu, L. Cao, Y. Liu, Y. Yang, J.-Y. Lu, J.-S. Wang
and J.-P. Cheng, Chem.–Eur. J., 2003, 9, 3937.
23 (a) G.-L. Li, Y.-X. Liang and J. C. Antilla, J. Am. Chem. Soc.,
2007, 129, 5830; (b) G.-L. Li and J. C. Antilla, Org. Lett.,
2009, 11, 1075.
24 (a) S. G. Ouellet, J. B. Tuttle and D. W. C. MacMillan, J. Am.
Chem. Soc., 2005, 127, 32; (b) R. I. Storer, D. E. Carrera, 36 (a) X.-Q. Zhu, M. Zhang, Q.-Y. Liu, X.-X. Wang, J.-Y. Zhang
Y. Ni and D. W. C. MacMillan, J. Am. Chem. Soc., 2006, 128,
84; (c) S. G. Ouellet, A. M. Walji and D. W. C. MacMillan,
Acc. Chem. Res., 2007, 40, 1327; (d) J. B. Tuttle, S. G. Ouellet
and J.-P. Cheng, Angew. Chem., Int. Ed., 2006, 45, 3954;
(b) X.-Q. Zhu, H. Liang, Y. Zhu and J.-P. Cheng, J. Org.
Chem., 2008, 73, 8403.
and D. W. C. MacMillan, J. Am. Chem. Soc., 2006, 128, 37 (a) X.-Q. Zhu, X. Chen and L.-R. Mei, Org. Lett., 2011, 13,
12662.
2456; (b) X.-Q. Zhu, Q.-Y. Liu, Q. Chen and L.-R. Mei, J. Org.
Chem., 2010, 75, 789.
25 (a) L. R. Mahoney and M. A. Darooge, J. Am. Chem. Soc.,
1975, 97, 4722; (b) K. U. Ingold, J. Am. Chem. Soc., 1985, 38 (a) X.-Q. Zhu, C.-H. Wang and H. Liang, J. Org. Chem.,
107, 7053; (c) G. F. Pedulli, J. Org. Chem., 1996, 61, 9259;
(d) M. Lucarini and G. F. Pedulli, J. Am. Chem. Soc., 1999,
121, 11546; (e) S. Singh and U. K. Batra, Indian J. Chem.,
Sect. B: Org. Chem. Incl. Med. Chem., 1989, 28, 1;
(f) S. Connon, Org. Biomol. Chem., 2007, 5, 3407.
2010, 75, 7240; (b) X.-Q. Zhu, C.-H. Wang, H. Liang and
J.-P. Cheng, J. Org. Chem., 2007, 72, 945; (c) X.-Q. Zhu and
C.-H. Wang, J. Org. Chem., 2010, 75, 5037; (d) X.-Q. Zhu and
C.-H. Wang, J. Phys. Chem. A, 2010, 114, 13244.
39 (a) M. M. Kreevoy and I.-S. H. Lee, J. Am. Chem. Soc., 1984,
106, 2550; (b) M. M. Kreevoy, D. Ostovic, I.-S. H. Lee,
D. A. Binder and G. W. King, J. Am. Chem. Soc., 1988, 110,
524; (c) I.-S. H. Lee, D. Ostovic and M. M. Kreevoy, J. Am.
Chem. Soc., 1988, 110, 3989; (d) D. Kim, I.-S. H. Lee and
M. M. Kreevoy, J. Am. Chem. Soc., 1990, 112, 1889;
(e) I.-S. H. Lee, E. H. Jeoung and M. M. Kreevoy, J. Am.
Chem. Soc., 1997, 119, 2722; (f) I.-S. H. Lee, K.-H. Chow and
M. M. Kreevoy, J. Am. Chem. Soc., 2002, 124, 7755;
(g) I.-S. H. Lee, E. H. Jeoung and M. M. Kreevoy, J. Am.
Chem. Soc., 2002, 124, 6502.
26 (a) G.-L. Zhao and A. Córdova, Tetrahedron Lett., 2006, 47,
7417; (b) K. Akagawa, H. Akabane, S. Sakamoto and
K. Kudo, Org. Lett., 2008, 10, 2035; (c) J. F. Schneider,
M. B. Lauber, V. Muhr, D. Kratzer and J. Paradies, Org.
Biomol. Chem., 2011, 9, 4323; (d) S. Zehani and G. Gelbard,
J. Chem. Soc., Chem. Commun., 1985, 1162.
27 (a) Z.-Y. Han, H. Xiao, X.-H. Chen and L.-Z. Gong, J. Am.
Chem. Soc., 2009, 131, 9182; (b) T. Fukuyama and
S. Omura, J. Synth. Org. Chem., Jpn., 2010, 68, 649;
(c) H. Adolfsson, Angew. Chem., Int. Ed., 2005, 44, 3340.
6088 | Org. Biomol. Chem., 2013, 11, 6071–6089
This journal is © The Royal Society of Chemistry 2013