Organometallics
Article
Chem. Soc. 2013, 135, 13664−13667. (h) Zhu, J.-L.; Wu, S.-T.; Shie, J.-
Y. J. Org. Chem. 2014, 79, 3623−3633. (i) Zhang, Z.-W.; Lin, A.; Yang,
J. J. Org. Chem. 2014, 79, 7041−7050. (j) Faulkner, A.; Scott, J. S.;
Bower, J. F. J. Am. Chem. Soc. 2015, 137, 7224−7230. (k) Chen, C.;
Hou, L.; Cheng, M.; Su, J.; Tong, X. Angew. Chem., Int. Ed. 2015, 54,
3092−3096. (l) Race, N. J.; Faulkner, A.; Shaw, M. H.; Bower, J. F.
Chem. Sci. 2016, 7, 1508−1513.
(5) In our previous work, transition-metal-catalyzed transformation
of isoxazol-5(4H)-ones (cyclic oxime esters) was investigated in which
oxidative addition and decarboxylative formation of nitrene complexes
are proposed as key steps. See: (a) Okamoto, K.; Oda, T.; Kohigashi,
S.; Ohe, K. Angew. Chem., Int. Ed. 2011, 50, 11470−11473.
(b) Okamoto, K.; Shimbayashi, T.; Tamura, E.; Ohe, K. Chem. -
Eur. J. 2014, 20, 1490−1494. (c) Shimbayashi, T.; Okamoto, K.; Ohe,
K. Synlett 2014, 25, 1916−1920. (d) Okamoto, K.; Shimbayashi, T.;
Yoshida, M.; Nanya, A.; Ohe, K. Angew. Chem., Int. Ed., in press, doi:
CONCLUSION
■
In summary, we have achieved isolation and identification of
the rhodacycle complexes by the reaction of a rhodium
precursor and aromatic oxime esters. The oxidative addition of
the N−O bonds in the oxime esters plays two characteristic
roles in the rhodacycle formation: (1) the rhodium center is
strongly attached to the nitrogen atom with the covalent bond;
therefore, it is close to the aromatic C−H bond; (2) the valency
of the rhodium center was changed into the higher oxidation
state; therefore, it reduces the barrier to C−H activation.
Moreover, the potential of the rhodacycles as an intermediate
for the cycloaddition of alkynes with oxime esters has also been
demonstrated. Further investigations for the effective catalytic
transformation of oxime esters are currently under way in our
laboratory.
(6) For recent reports on rhodium-catalyzed transformation reactions
of oxime derivatives involving N−O bond cleavage, see ref 10b and:
(a) Parthasarathy, K.; Cheng, C.-H. J. Org. Chem. 2009, 74, 9359−
9364. (b) Too, P. C.; Wang, Y.-F.; Chiba, S. Org. Lett. 2010, 12, 5688−
5691. (c) Zhang, X.; Chen, D.; Zhao, M.; Zhao, J.; Jia, A.; Li, X. Adv.
Synth. Catal. 2011, 353, 719−723. (d) Zhao, P.; Wang, F.; Han, K.; Li,
X. Org. Lett. 2012, 14, 3400−3403. (e) Hou, W.; Zhou, B.; Yang, Y.;
Feng, H.; Li, Y. Org. Lett. 2013, 15, 1814−1817. (f) Neely, J. M.;
Rovis, T. J. Am. Chem. Soc. 2014, 136, 2735−2738. (g) Zhao, D.; Lied,
F.; Glorius, F. Chem. Sci. 2014, 5, 2869−2873. (h) Nakamura, I.; Sato,
Y.; Takeda, K.; Terada, M. Chem. - Eur. J. 2014, 20, 10214−10219.
(7) For recent reports on copper-catalyzed transformation reactions
of oxime derivatives involving N−O bond cleavage, see: (a) Liu, S.;
Yu, Y.; Liebeskind, L. S. Org. Lett. 2007, 9, 1947−1950. (b) Too, P. C.;
Chua, S. H.; Wong, S. H.; Chiba, S. J. Org. Chem. 2011, 76, 6159−
6168. (c) Ren, Z.-H.; Zhang, Z.-Y.; Yang, B.-Q.; Wang, Y.-Y.; Guan, Z.-
H. Org. Lett. 2011, 13, 5394−5397. (d) Zhao, M.-N.; Liang, H.; Ren,
Z.-H.; Guan, Z.-H. Synthesis 2012, 44, 1501−1506. (e) Nakamura, I.;
Kudo, Y.; Araki, T.; Zhang, D.; Kwon, E.; Terada, M. Synthesis 2012,
44, 1542−1550. (f) Wei, Y.; Yoshikai, N. J. Am. Chem. Soc. 2013, 135,
3756−3759. (g) Nakamura, I.; Kudo, Y.; Terada, M. Angew. Chem., Int.
Ed. 2013, 52, 7536−7539. (h) Tang, X.; Huang, L.; Qi, C.; Wu, W.;
Jiang, H. Chem. Commun. 2013, 49, 9597−9599. (i) Faulkner, A.;
Race, N. J.; Scott, J. S.; Bower, J. F. Chem. Sci. 2014, 5, 2416−2421.
(j) Tang, X.; Huang, L.; Yang, J.; Xu, Y.; Wu, W.; Jiang, H. Chem.
Commun. 2014, 50, 14793−14796. (k) Su, H.; Li, W.; Xuan, Z.; Yu, W.
Adv. Synth. Catal. 2015, 357, 64−70.
(8) For other transition-metal-catalyzed transformation of oxime
derivatives involving N−O bond cleavage, see: Ni: (a) Yoshida, Y.;
Kurahashi, T.; Matsubara, S. Chem. Lett. 2011, 40, 1140−1142.
(b) Yoshida, Y.; Kurahashi, T.; Matsubara, S. Chem. Lett. 2012, 41,
1498−1499. Fe: (c) Deb, I.; Yoshikai, N. Org. Lett. 2013, 15, 4254−
4257. Ru: (d) Kornhaaß, C.; Li, J.; Ackermann, L. J. Org. Chem. 2012,
77, 9190−9198. (e) Zhao, M.-N.; Hui, R.-R.; Ren, Z.-H.; Wang, Y.-Y.;
Guan, Z.-H. Org. Lett. 2014, 16, 3082−3085. Ir: (f) Nishimura, T.;
Yoshinaka, T.; Nishiguchi, Y.; Maeda, Y.; Uemura, S. Org. Lett. 2005,
7, 2425−2427.
(9) Similar imine-containing five-membered rhodacycles bearing two
phosphine ligands at axial positions were reported. See: (a) Huang, L.-
Y.; Aulwurm, U. R.; Heinemann, F. W.; Knoch, F.; Kisch, H. Chem. -
Eur. J. 1998, 4, 1641−1646. (b) Marcazzan, P.; Patrick, B. O.; James,
B. R. Organometallics 2005, 24, 1445−1451. (c) Ezhova, M. B.; Patrick,
B. O.; James, B. R. Organometallics 2005, 24, 3753−3757.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures for preparation of oxime esters
and rhodacycle complexes; procedures for stoichiometric
and catalytic reactions; and NMR spectroscopic data
X-ray crystallographic data for the oxime and rhodium
complexes 2, 3, and 5 (CIF)
AUTHOR INFORMATION
Corresponding Authors
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This study has been financially supported by JSPS KAKENHI
(Grant-in-Aid for Young Scientists (B); Grant No. 24750085).
The authors thank Prof. Tetsuaki Fujihara (Kyoto University)
for his support with NMR measurements and X-ray crystallo-
graphic analyses. Helpful and suggestive comments from the
reviewers are gratefully appreciated.
REFERENCES
■
(1) For reviews, see: (a) Kitamura, M.; Narasaka, K. Chem. Rec. 2002,
2, 268−277. (b) Narasaka, K.; Kitamura, M. Eur. J. Org. Chem. 2005,
2005, 4505−4519. (c) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc.
Rev. 2015, 44, 1155−1171. (d) Huang, H.; Cai, J.; Deng, G.-J. Org.
Biomol. Chem. 2016, 14, 1519−1530.
(2) (a) Tillack, A.; Arndt, P.; Spannenberg, A.; Kempe, R.; Rosenthal,
U. Z. Anorg. Allg. Chem. 1998, 624, 737−740. (b) Ferreira, C. M. P.;
Guedes da Silva, M. F. C.; Kukushkin, V. Y.; Frausto, J. J. R.;
́
Pombeiro, A. J. L. J. Chem. Soc., Dalton Trans. 1998, 325−326.
(3) Tsutsui, H.; Narasaka, K. Chem. Lett. 1999, 28, 45−46.
(10) One might think about the possibility of another mechanism in
which the C−H activation occurs first and then the oxidative addition
of N−O bonds follows (see also ref 6b). However, in the case of
rhodium(I) complexes, such a mechanism can be excluded by the
result that other oxime derivatives such as oxime ethers (no N−O
bond cleavage occurs) did not give any C−H activation products
under similar conditions.
(4) For recent studies on palladium-catalyzed transformation
reactions of oxime derivatives involving N−O bond cleavage, see:
(a) Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2009, 48,
572−577. (b) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132,
3676−3677. (c) Kitamura, M.; Moriyasu, Y.; Okauchi, T. Synlett 2011,
22, 643−646. (d) Faulkner, A.; Bower, J. F. Angew. Chem., Int. Ed.
2012, 51, 1675−1679. (e) Faulkner, A.; Scott, J. S.; Bower, J. F. Chem.
Commun. 2013, 49, 1521−1523. (f) Race, N. J.; Bower, J. F. Org. Lett.
2013, 15, 4616−4619. (g) Hong, W. P.; Iosub, A. V.; Stahl, S. S. J. Am.
(11) Selected examples of ortho C−H activation by rhodiium(III)
directed by an N-oxyimino or imino group. See: (a) Fukutani, T.;
E
Organometallics XXXX, XXX, XXX−XXX