Communication
ChemComm
L. Van Meervelt and W. Dehaen, Chem. Commun., 2013, 49, 6310;
(h) D. Cao, Y. Kou, J. Liang, Z. Chen, L. Wang and H. Meier, Angew.
Chem., Int. Ed., 2009, 48, 9721.
Meanwhile, fluorescence microscopy (Fig. 3h) and confocal
laser scanning microscopy (CLSM) (Fig. 3f) further revealed
the gel morphology of G2CH1 in a micrometer scale and its PL
properties of strong blue emission. In addition, the scanning
electron microscopy (SEM) image of the gel also shows its
glutinous surface morphology (Fig. 3i).
Thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC) (Fig. S30 and S31, ESI†) are used as special
methods to characterize the thermal stabilities of the supra-
molecular gel. Especially, TGA data show that the gel has no
obvious decomposition from 175 1C to 200 1C, nevertheless,
from the DSC curve, there are three peaks at 177.1 1C, 182.2 1C,
and 195.7 1C, ascribing to the physical transformation of
supramolecular aggregation states of the gel instead of the
self-decomposition of any components.
5 (a) Y. Zhou, L.-L. Tan, Q.-L. Li, X.-L. Qiu, A.-D. Qi, Y. Tao and
Y.-W. Yang, Chem. – Eur. J., 2014, 20, 2998; (b) Y.-L. Sun, Y.-W. Yang,
D.-X. Chen, G. Wang, Y. Zhou, C.-Y. Wang and J. F. Stoddart, Small, 2013,
9, 3224; (c) T. Ogoshi, D. Yamafuji, T. Yamagishi and A. M. Brouwer,
Chem. Commun., 2013, 49, 5468; (d) S. Dong, J. Yuan and F. Huang, Chem.
Sci., 2014, 5, 247; (e) G. Yu, C. Han, Z. Zhang, J. Chen, X. Yan, B. Zheng,
S. Liu and F. Huang, J. Am. Chem. Soc., 2012, 134, 8711; ( f ) X. Hou, C. Ke,
C. Cheng, N. Song, A. K. Blackburn, A. A. Sarjeant, Y. Y. Botros,
Y.-W. Yang and J. F. Stoddart, Chem. Commun., 2014, 50, 6196.
6 (a) L. Chen, W. Si, L. Zhang, G. Tang, Z.-T. Li and J.-L. Hou, J. Am.
Chem. Soc., 2013, 135, 2152; (b) X.-B. Hu, Z. Chen, G. Tang, J.-L. Hou
and Z.-T. Li, J. Am. Chem. Soc., 2012, 134, 8384; (c) W. Si, L. Chen,
X.-B. Hu, G. Tang, Z. Chen, J.-L. Hou and Z.-T. Li, Angew. Chem., Int.
Ed., 2011, 50, 12564.
7 N. L. Strutt, D. Fairen-Jimenez, J. Iehl, M. B. Lalonde, R. Q. Snurr,
O. K. Farha, J. T. Hupp and J. F. Stoddart, J. Am. Chem. Soc., 2012,
134, 17436.
8 (a) G. Yu, Y. Ma, C. Han, Y. Yao, G. Tang, Z. Mao, C. Gao and
F. Huang, J. Am. Chem. Soc., 2013, 135, 10310; (b) Q. Duan, Y. Cao,
Y. Li, X. Hu, T. Xiao, C. Lin, Y. Pan and L. Wang, J. Am. Chem. Soc.,
2013, 135, 10542; (c) Y. Yao, M. Xue, J. Chen, M. Zhang and
F. Huang, J. Am. Chem. Soc., 2012, 134, 15712; (d) H. Zhang,
X. Ma, K. T. Nguyen and Y. Zhao, ACS Nano, 2013, 7, 7853.
9 (a) H. Li, D.-X. Chen, Y.-L. Sun, Y. B. Zheng, L.-L. Tan, P. S. Weiss
and Y.-W. Yang, J. Am. Chem. Soc., 2013, 135, 1570; (b) D.-X. Chen,
Y.-L. Sun, Y. Zhang, J.-Y. Cui, F.-Z. Shen and Y.-W. Yang, RSC Adv.,
2013, 3, 5765; (c) H. Zhang, N. L. Strutt, R. S. Stoll, H. Li, Z. X. Zhu
and J. F. Stoddart, Chem. Commun., 2011, 47, 11420; (d) P. Wang,
X. Yan and F. Huang, Chem. Commun., 2014, 50, 5017; (e) T. Adiri,
D. Marciano and Y. Cohen, Chem. Commun., 2013, 49, 7082.
10 (a) X. Wang, K. Han, J. Li, X. S. Jia and C. J. Li, Polym. Chem., 2013,
4, 3998; (b) T. Ogoshi, K. Yoshikoshi, T. Aoki and T. Yamagishi,
Chem. Commun., 2013, 49, 8785; (c) H. Zhang, K. T. Nguyen, X. Ma,
H. Yan, J. Guo, L. Zhu and Y. Zhao, Org. Biomol. Chem., 2013,
11, 2070; (d) G. Yu, M. Xue, Z. Zhang, J. Li, C. Han and F. Huang,
J. Am. Chem. Soc., 2012, 134, 13248; (e) X. Hu, X. Wu, S. Wang,
D. Chen, W. Xia, C. Lin, Y. Pan and L. Wang, Polym. Chem., 2013,
4, 4292; ( f ) X. Hu, X. Wu, Q. Duan, T. Xiao, C. Lin and L. Wang, Org.
Lett., 2012, 14, 4826; (g) Y. Guan, M. Ni, X. Hu, T. Xiao, S. Xiong,
C. Lin and L. Wang, Chem. Commun., 2012, 48, 8529; (h) K. Wang,
C.-Y. Wang, Y. Wang, H. Li, C.-Y. Bao, J.-Y. Liu, S. X.-A. Zhang and
Y.-W. Yang, Chem. Commun., 2013, 49, 10528; (i) J.-F. Xu, Y.-Z. Chen,
L.-Z. Wu, C.-H. Tung and Q.-Z. Yang, Org. Lett., 2013, 15, 6148.
11 (a) M. M. Tian, D.-X. Chen, Y.-L. Sun, Y.-W. Yang and Q. Jia, RSC
Adv., 2013, 3, 22111; (b) L. Wu, Y. Fang, Y. Jia, Y. Yang, J. Liao, N. Liu,
X. Yang, W. Feng, J. Ming and L. Yuan, Dalton Trans., 2014, 43, 3835.
12 D.-D. Zheng, D.-Y. Fu, Y.-Q. Wu, Y.-L. Sun, L.-L. Tan, T. Zhou,
S.-Q. Ma, X. Zha and Y.-W. Yang, Chem. Commun., 2014, 50, 3201.
13 (a) Y. Kou, H. Tao, D. Cao, Z. Fu, D. Schollmeyer and H. Meier,
Eur. J. Org. Chem., 2010, 6464; (b) T. Ogoshi, K. Kida and
T. Yamagishi, J. Am. Chem. Soc., 2012, 134, 20146; (c) X.-B. Hu,
L. Chen, W. Si, Y. Yu and J.-L. Hou, Chem. Commun., 2011, 47, 4694;
(d) N. L. Strutt, R. S. Forgan, J. M. Spruell, Y. Y. Botros and
J. F. Stoddart, J. Am. Chem. Soc., 2011, 133, 5668.
In summary, we report the design and synthesis of a new
pillarene tetramer derivative (H1) with a TPE core and four
pillarene cavities, which can bind strongly to the linear neutral
guest linker G2 with cyano sites and triazole sites to form A4/B2-type
supramolecular polymers, G2CH1, in CHCl3. Fascinatingly, the
supramolecular self-assembly of H1 and G2 results in dramatic
blue fluorescent emission enhancement due to the RIR of TPE
cores. The fluorescent intensity of G2CH1 assemblies in CHCl3
showed good temperature and solvent responsiveness. Further-
more, blue supramolecular gels can be obtained at a host concen-
tration of 70 mmol LÀ1 with a host–guest molar ratio of 1 : 2. To
the best of our knowledge, this is the first report on pillarene
derivatives with intriguing fluorescent enhancement phenomena,
which paves a new way of efficient fabrication of pillarene-based
fluorescent materials.
This research was supported by the National Natural Science
Foundation of China (21272093), the Innovation Program of
the State Key Laboratory of Supramolecular Structure, and
Materials, and the National Science Foundation for Fostering
Talents in Basic Research of the National Natural Science
Foundation of China (Grant No. J1103302).
Notes and references
1 (a) J. Howard and A. A. Hyman, Nature, 2003, 422, 753; (b) H. Y. Kueh
and T. J. Mitchison, Science, 2009, 325, 960; (c) C. Cai, Y. Li, J. Lin,
L. Wang, S. Lin, X.-S. Wang and T. Jiang, Angew. Chem., Int. Ed.,
2013, 52, 7732; (d) T. Sendai, S. Biswas and T. Aida, J. Am. Chem. Soc.,
2013, 135, 11509.
2 (a) Y.-W. Yang, Y.-L. Sun and N. Song, Acc. Chem. Res., 2014, DOI:
10.1021/ar500022f; (b) H. Li, L.-L. Tan, P. Jia, Q.-L. Li, Y.-L. Sun,
J. Zhang, Y.-Q. Ning, J. Yu and Y.-W. Yang, Chem. Sci., 2014, 5, 2804.
3 (a) R. Chakrabarty, P. S. Mukherjee and P. J. Stang, Chem. Rev., 2011,
111, 6810; (b) D. K. Kumar and J. W. Steed, Chem. Soc. Rev., 2014,
43, 2080; (c) Z.-Y. Li, Y. Zhang, C.-W. Zhang, L.-J. Chen, C. Wang,
H. Tan, Y. Yu, X. Li and H.-B. Yang, J. Am. Chem. Soc., 2014, DOI:
10.1021/ja413047r; (d) S. Dong, B. Zheng, F. Wang and F. Huang,
Acc. Chem. Res., 2014, DOI: 10.1021/ar5000456.
14 (a) C. Li, J. Ma, L. Zhao, Y. Zhang, Y. Yu, X. Shu, J. Li and X. Jia,
Chem. Commun., 2013, 49, 1924; (b) X. Shu, S. Chen, J. Li, Z. Chen,
L. Weng, X. Jia and C. Li, Chem. Commun., 2012, 48, 2967; (c) Y. Ma,
M. Xue, Z. Zhang, X. Chi and F. Huang, Tetrahedron, 2013, 69, 4532;
(d) L. Liu, D. Cao, Y. Jin, H. Tao, Y. Kou and H. Meier, Org. Biomol.
Chem., 2011, 9, 7007.
15 X.-F. Duan, J. Zeng, J.-W. Lu and Z.-B. Zhang, J. Org. Chem., 2006,
71, 9873.
16 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004.
17 (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu,
H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun.,
2001, 1740; (b) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev.,
2011, 40, 5361.
18 A. C. Fahrenbach, S. C. Warren, J. T. Incorvati, A. J. Avestro,
J. C. Barnes, J. F. Stoddart and B. A. Grzybowski, Adv. Mater.,
2013, 25, 331.
4 (a) T. Ogoshi, S. Kanai, S. Fujinami, T. A. Yamagishi and
Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022; (b) L.-L. Tan,
Y. Zhang, B. Li, K. Wang, S. Zhang, Y. Tao and Y.-W. Yang, New
J. Chem., 2014, 38, 845; (c) P. J. Cragg and K. Sharma, Chem. Soc.
Rev., 2012, 41, 597; (d) M. Xue, Y. Yang, X. Chi, Z. Zhang and
F. Huang, Acc. Chem. Res., 2012, 45, 1294; (e) H. Zhang and Y. Zhao,
Chem. – Eur. J., 2013, 19, 16862; ( f ) K. Wang, L.-L. Tan, D.-X. Chen,
N. Song, G. Xi, S. X.-A. Zhang, C. Li and Y.-W. Yang, Org. Biomol.
Chem., 2012, 10, 9405; (g) M. P. Sonawane, J. Jacobs, J. Thomas,
8234 | Chem. Commun., 2014, 50, 8231--8234
This journal is ©The Royal Society of Chemistry 2014