ACS Catalysis
Research Article
16, 964−967. (d) Morrill, L. C.; Smith, S. M.; Slawin, A. M. Z.; Smith,
A. D. J. Org. Chem. 2014, 79, 1640−1655.
Notes
The authors declare no competing financial interest.
(15) (a) Chiu, P.; Leung, L. T.; Ko, B. C. B. Nat. Prod. Rep. 2010, 27,
1066−1083. (b) Florence, G. J.; Gardner, N. M.; Paterson, I. Nat.
Prod. Rep. 2008, 25, 342−375.
ACKNOWLEDGMENTS
■
(16) (a) Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.;
Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J.
Am. Chem. Soc. 2000, 122, 8654−8664. (b) Girotra, N. N.; Wendler,
N. L. Tetrahedron Lett. 1982, 23, 5501−5504. (c) White, J. D.;
Blakemore, P. R.; Green, N. J.; Hauser, E. B.; Holoboski, M. A.;
Keown, L. E.; Nylund Kolz, C. S.; Phillips, B. W. J. Org. Chem. 2002,
67, 7750−7760.
We thank the Royal Society for a University Research
Fellowship (A.D.S.), and the European Research Council
under the European Union’s Seventh Framework Programme
(FP7/2007-2013) ERC Grant Agreement No. 279850
(A.T.D.). We also thank the EPSRC UK National Mass
Spectrometry Facility at Swansea University.
(17) Gokhale, R. S.; Tsuji, S. Y.; Cane, D. E.; Khosla, C. Science 1999,
284, 482−485.
REFERENCES
■
(18) (a) Evans, D. A. Aldrichimica Acta 1982, 15, 23−32. (b) Davies,
S. G.; Nicholson, R. L.; Smith, A. D. Org. Biomol. Chem. 2004, 2,
3385−3400.
(1) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int.
Ed. 2006, 45, 7134−7186.
(2) Reyes, E.; Jiang, H.; Milelli, A.; Elsner, P.; Hazell, R. G.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 9202−9205.
(3) For reviews on NHC catalysis, see: (a) Marion, N.; Díez-
(19) Catalytic methods of δ-lactone synthesis are uncommon,
although not unheard of: (a) Casas, J.; Engqvist, M.; Ibrahem, I.;
́
Kaynak, B.; Cordova, A. Angew. Chem., Int. Ed. 2005, 44, 1343−1345.
́
Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988−3000.
(b) Albrecht, L.; Richter, B.; Krawczyk, H.; Jørgensen, K. A. J. Org.
Chem. 2008, 73, 8337−8343.
(b) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107,
5606−5655. (c) Moore, J. L.; Rovis, T. Top. Curr. Chem. 2010, 291,
77−144. (d) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev.
2013, 42, 4906−4917.
(20) Yuan, Y.; Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126, 14720−
14721.
(21) Zhang, D.; Yuan, C. Eur. J. Org. Chem. 2007, 3916−3924.
(22) See Supporting Information for further details on optimization
and stereochemical assignment.
(23) α-Aryl α-aroyloxyaldehydes rearrange under redox NHC
catalysis conditions to give the corresponding α-aroyl acetophenone;
see ref 10a.
(24) Crystallographic data for 14, 19, and 28 have been deposited
with the Cambridge Crystallographic Data Centre as supplementary
publication numbers CCDC 984035, CCDC 984036, and CCDC
984037, respectively.
(25) Allen, S. E.; Mahatthananchai, J.; Bode, J. W.; Kozlowski, M. C.
J. Am. Chem. Soc. 2012, 134, 12098−12103.
(26) Collett, C. J.; Massey, R. S.; Maguire, O. R.; Batsanov, A. S.;
O’Donoghue, A. C.; Smith, A. D. Chem. Sci. 2013, 4, 1514−1522.
(4) For reviews on NHC redox catalysis, see: (a) Vora, H. U.;
Wheeler, P.; Rovis, T. Adv. Synth. Catal. 2012, 354, 1617−1639.
(b) Douglas, J.; Churchill, G.; Smith, A. D. Synthesis 2012, 44, 2295−
2309.
(5) (a) Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem.
Soc. 2004, 126, 9518−9519. (b) He, M.; Uc, G. J.; Bode, J. W. J. Am.
Chem. Soc. 2006, 128, 15088−15089.
(6) Azolium enolates can be accessed from unfunctionalized
aldehydes and NHCs with an external oxidant: (a) Zhao, X.; Ruhl,
K. E.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 12330−12333.
(b) Mo, J.; Yang, R.; Chen, X.; Tiwari, B.; Chi, Y. R. Org. Lett. 2013,
15, 50−53.
(7) (a) Kobayashi, S.; Kinoshita, T.; Uehara, H.; Sudo, T.; Ryu, I.
Org. Lett. 2009, 11, 3934−3937. (b) Fang, X.; Chen, X.; Chi, Y. R. Org.
Lett. 2011, 13, 4708−4711.
(8) Substitution at the α-position of the acceptor is possible by using
an imidazolidinone ring system: O’Bryan McCusker, E.; Scheidt, K. A.
Angew. Chem., Int. Ed. 2013, 52, 13616−13620.
(9) Azolium enolates accessed via ketenes have also been shown to
react with α-substituted enones: (a) Lv, H.; You, L.; Ye, S. Adv. Synth.
Catal. 2009, 351, 2822−2826. (b) Lv, H.; Chen, X.-Y.; Sun, L.-H.; Ye,
S. J. Org. Chem. 2010, 75, 6973−6976. (c) Jian, T.-Y.; Chen, X.-Y.;
Sun, L.-H.; Ye, S. Org. Biomol. Chem. 2013, 11, 158−163.
(10) (a) Ling, K. B.; Smith, A. D. Chem. Commun. 2011, 47, 373−
375. (b) Davies, A. T.; Taylor, J. E.; Douglas, J.; Collett, C. J.; Morrill,
L. C.; Fallan, C.; Slawin, A. M. Z.; Churchill, G.; Smith, A. D. J. Org.
Chem. 2013, 78, 9243−9257. (c) Taylor, J. E.; Daniels, D. S. B.; Smith,
A. D. Org. Lett. 2013, 15, 6058−6061.
(11) Kawanaka, Y.; Phillips, E. M.; Scheidt, K. A. J. Am. Chem. Soc.
2009, 131, 18028−18029.
(12) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int.
Ed. 2011, 50, 5331−5334.
(13) The trifluoromethyl group is highly desired due to the unique
physicochemical properties it can impart onto molecules: (a) Purser,
S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,
320−330. (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359−4369.
(c) Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and
Applications; Petrov, V. A.; John Wiley & Sons: Hoboken, NJ, 2009; pp
397−506.
(14) Previous work on incorporating trifluoromethyl groups from the
Smith group: (a) Morrill, L. C.; Douglas, J.; Lebl, T.; Slawin, A. M. Z.;
Fox, D. J.; Smith, A. D. Chem. Sci. 2013, 4, 4146−4155. (b) Stark, D.
G.; Morrill, L. C.; Yeh, P.-P.; Slawin, A. M. Z.; O’Riordan, T. J. C.;
Smith, A. D. Angew. Chem., Int. Ed. 2013, 52, 11642−11646. (c) Yeh,
P.-P.; Daniels, D. S. B.; Slawin, A. M. Z.; Smith, A. D. Org. Lett. 2014,
2700
dx.doi.org/10.1021/cs500667g | ACS Catal. 2014, 4, 2696−2700