Dalton Transactions
Paper
9.18 (d, J = 5, Hz, 1H), 8.56 (d, J = 5, Hz, 1H), 8.46 (d, J = 7.21, Hz,
1H), 8.44 (d, J = 8.29, Hz, 1H), 8.43 (d, J = 9.21, Hz, 1H), 8.32 (d, J =
8.3, Hz, 1H), 8.08 (d, J = 8.02, 1.3, Hz, 2H), 8.05 (d, J = 9.3, Hz,
1H),7.96 (d, J = 8.03, 1.49, Hz, 1H), 7.88 (d, J = 5.7, Hz, 1H),
7.79 (d, J = 7.99, 1.4, Hz, 1H), 7.76 (d, J = 9.3, 1.5, Hz, 1H) 7.62
(d, J = 7.3, 1.25, Hz, 1H), 7.61 (d, J = 6.07, Hz, 1H), 7.58 (d, J =
7.3, 1.3, Hz, 1H), 7.3 (d, J = 7.31, 1.2, Hz, 1H), 7.13 (d, J = 7.3,
1.3, Hz, 1H). Analogous experiments were carried out with
MV2+ and Ru(NH3)6Cl3 as described in text.
Photochemical oxidations of Zn(ttma)2 follow the same pro-
cedures. As example, a mixture of 4 (12.6 mg, 33.0 µmol) and
Co(NH3)5Cl3 (7.4 mg, 41.3 µmol) were placed in a 50 mL
jacketed flask with 25.0 mL anhydrous CH3CN. The flask was
sealed, degassed with N2, and cooled to 5 °C with a circulating
cooling bath. The reaction was photolyzed for 45 min with a
3 B. Durham, S. R. Wilson, D. J. Hodgson and T. J. Meyer,
J. Am. Chem. Soc., 1980, 102, 600–607.
4 J.-P. Collin, D. Jouvenot, M. Koizumi and J.-P. Sauvage,
Inorg. Chem., 2005, 44, 4693–4698.
5 M. J. Bjerrum, D. R. Casimiro, I. J. Chang, A. J. Di Bilio,
H. B. Gray, M. G. Hill, R. Langen, G. A. Mines, L. K. Skov
and J. R. Winkler, J. Bioenerg. Biomembr., 1995, 27,
295–302.
6 J. K. Hurst, Coord. Chem. Rev., 2005, 249, 313–328.
7 P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz and
N. Sutin, J. Am. Chem. Soc., 1984, 106, 4772–4783.
8 E. L. Lebeau, S. A. Adeyemi and T. J. Meyer, Inorg. Chem.,
1998, 37, 6476–6484.
9 N. J. Cherepy, G. P. Smestad, M. Grätzel and J. Z. Zhang,
J. Phys. Chem. B, 1997, 101, 9342–9351.
400 nm low-pass filter before the addition of NaOHaq. (1 mol 10 W. Kandioller, A. Kurzwernhart, M. Hanif, S. M. Meier,
eq.). With formation of an insoluble red precipitate; the
remaining solution was analyzed by ESI-MS. Analogous experi-
ments were done with DDQ as described in text.
H. Henke, B. K. Keppler and C. G. Hartinger, J. Organomet.
Chem., 2011, 696, 999–1010.
11 M. Hanif, P. Schaaf, W. Kandioller, M. Hejl, M. A. Jakupec,
A. Roller, B. K. Keppler and C. G. Hartinger, Aust. J. Chem.,
2010, 63, 1521–1528.
Small scale photochemical oxidations of 1 and 4
These followed procedures described above. A stock solution 12 É. A. Enyedy, O. Dömötör, E. Varga, T. Kiss, R. Trondl,
of [Ru(bpy)2ttma][PF6] was prepared from 17.0 mg (23.7 µmol)
in 5.0 mL anhydrous acetonitrile (4.75 mM); a sample of this
C. G. Hartinger and B. K. Keppler, J. Inorg. Biochem., 2012,
117, 189–197.
solution (220 µL, 0.924 µmol) was mixed with 200 equivalents 13 S. Chaves, R. Jelic, C. Mendonça, M. Carrasco,
of MV2+ (4.76 mg, 0.185 mmol) in a purged quartz cell and
irradiated for 15 min with a 400 nm low-pass filter. The reac-
Y. Yoshikawa, H. Sakurai and M. A. Santos, Metallomics,
2010, 2, 220–227.
tion was then mixed with excess NaOH (0.25 mL of 0.143 M) 14 J. A. Lewis and S. M. Cohen, Inorg. Chem., 2004, 43,
and examined by LCMS for characterization and quantification
of products.
6534–6536.
15 F. E. Jacobsen, J. A. Lewis and S. M. Cohen, J. Am. Chem.
Soc., 2006, 128, 3156–3157.
16 K. Blazevic, K. Jakopcic and V. Hahn, Bull. Sci., Sect. A,
1969, 14, 1.
17 J. A. Lewis, D. T. Puerta and S. M. Cohen, Inorg. Chem.,
2003, 42, 7455–7459.
18 S. R. Schlesinger, B. Bruner, P. J. Farmer and S.-K. Kim,
J. Enzyme Inhib. Med. Chem., 2013, 28, 137–142.
19 D. Brayton, F. E. Jacobsen, S. M. Cohen and P. J. Farmer,
Chem. Commun., 2006, 206.
20 M. Backlund, J. Ziller and P. J. Farmer, Inorg. Chem., 2008,
47, 2864–2870.
Conclusions
The dithiomaltol complexes 1 and 4 undergo photo-oxidation
in the presence of electron acceptors, reactivity which stems
from transitions localized on the ligand. These results suggest
the use of dithiomaltol and hetero-substituted maltol deriva-
tives for applications which require photo-induced electron
transfers independent of redox-active metal ions.
21 I. J. Chang, H. B. Gray and J. R. Winkler, J. Am. Chem. Soc.,
1991, 113, 7056–7057.
Acknowledgements
22 M. M. Backlund Walker, Unexpected reactivity of sulfur
chelators, Ph.D., University of California, Irvine, California,
United States, 2009.
23 D. F. Brayton, Targeting melanoma via metal based drugs:
Dithiocarbamates, disulfiram copper specificity, and thiomaltol
ligands, Ph.D., University of California, Irvine, California,
United States, 2006.
This research was supported by the American Chemical
Society (PJF PRF 51921-ND3) and NIH-NIGMS (MS
5SC1GM084776). MAO acknowledges support by the National
Science Foundation (CHE-0911690; CMMI-0963509; CHE-0840518)
and the Robert A. Welch Foundation (Grant B-1542). We thank
Professors Jay Winkler and T. J. Meyer for helpful discussions.
24 A. Petroni, L. D. Slep and R. Etchenique, Inorg. Chem.,
2008, 47, 951–956.
25 H. Zhang, C. S. Rajesh and P. K. Dutta, J. Phys. Chem. A,
2008, 112, 808–817.
References
1 N. Robertson, Angew. Chem., Int. Ed., 2006, 45, 2338–2345.
2 M. H. V. Huynh, D. M. Dattelbaum and T. J. Meyer, Coord. 26 (a) K. S. Alber, T. K. Hahn, M. L. Jones, K. R. Fountain and
Chem. Rev., 2005, 249, 457–483.
D. A. Van Galen, J. Electroanal. Chem., 1995, 383, 119–126;
This journal is © The Royal Society of Chemistry 2014
Dalton Trans., 2014, 43, 11548–11556 | 11555