Journal of the American Chemical Society
Communication
achieve formal ortho-selective Friedel−Crafts alkylation of electron-
deficient arenes.
1), for a Ph.D. studentship. J.F.B. is indebted to the Royal Society
for a University Research Fellowship.
(11) Enantioselective hydroarylation/hydroheteroarylation protocols
have been developed, but efficient processes are limited to strained
bicycloalkenes: (a) Dorta, R.; Togni, A. Chem. Commun. 2003, 760.
(b) Sevov, C. S.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2116. Seealso
refs 4c and 8.
REFERENCES
■
(1) (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.;
Sonoda, M.; Chatani, N. Nature 1993, 366, 529. See also: (b) Lewis, L.
N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728.
(12) For a discussion of factors that affect this type of equilibrium, see:
Harvey, J. N. Organometallics 2001, 20, 4887.
(2) Atom-economic processes are a key ideal of green chemistry: Trost,
B. M. Science 1991, 254, 1471.
(13)Selected examples:(a) Kohara, T.;Yamamoto, T.;Yamamoto, A. J.
Organomet. Chem. 1980, 192, 265. (b) Brown, J. M.; Guiry, P. J. Inorg.
Chim. Acta 1994, 220, 249. (c) Marcone, J. E.; Moloy, K. G. J. Am. Chem.
Soc. 1998, 120, 8527. Bulky ligands can achieve the same outcome:
(d) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem.
Soc. 1999, 121, 3224. (e) Culkin, D. A.; Hartwig, J. F. Organometallics
(3) Selected reviews: (a) Kakiuchi, F.; Murai, S. Top. Organomet. Chem.
1999, 3, 47. (b) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698.
(c) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
(d) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (e) Kakiuchi, F.;
Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. (f) Park, Y. J.; Jun, C.-H.
Bull. Korean Chem. Soc. 2005, 26, 871. (g) Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (h) Kakiuchi, F.; Kochi, T.
Synthesis 2008, 3013. (i) Kitamura, T. Eur. J. Org. Chem. 2009, 1111.
(j) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(k) Nakao, Y. Chem. Rec. 2011, 11, 242. (l) Colby, D. A.; Tsai, A. S.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814.
(m) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012,
112, 5879. (n) Zheng, Q.-Z.; Jiao, N. Tetrahedron Lett. 2014, 55, 1121.
(4) Selected recent examples: (a) Lim, S.-G.; Ahn, J.-A.; Jun, C.-H. Org.
Lett. 2004, 6, 4687. (b)Kuninobu, Y.;Tokunaga, Y.;Kawata, A.;Takai, K.
J. Am. Chem. Soc. 2006, 128, 202. (c) Tsuchikama, K.; Kasagawa, M.;
Hashimoto, Y.-K.; Endo, K.; Shibata, T. J. Organomet. Chem. 2008, 693,
3939. (d) Zhang, Y. J.; Skucas, E.; Krische, M. J. Org. Lett. 2009, 11, 4248.
(e) Schinkel, M.; Marek, I.; Ackermann, L. Angew. Chem., Int. Ed. 2013,
52, 3977. (f) Schinkel, M.; Wallbaum, J.; Kozhushkov, S. I.; Marek, I.;
Ackermann, L. Org. Lett. 2013, 15, 4482. (g) Ilies, L.; Chen, Q.; Zeng, X.;
Nakamura, E. J. Am. Chem. Soc. 2011, 133, 5221.
́ ́
2004,23,3398.(f)Bakhmutov, V.I.;Bozoglian, F.;Gomez, K.;Gonzalez,
G.; Grushin, V. V.; Macgregor, S. A.; Martin, E.; Miloserdov, F. M.;
Novikov, M. A.; Panetier, J. A.; Romashov, L. V. Organometallics 2012,
31, 1315.
(14) For discussions, see: (a) Dierkes, P.; van Leeuwen, P. W. N. M. J.
Chem. Soc., Dalton Trans. 1999, 1519. (b) van Leeuwen, P. W. N. M.;
Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 2741.
(c) Freixa, Z.; van Leeuwen, P. W. N. M. Dalton Trans. 2003, 1890.
(d) Birkholz (nee Gensow), M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M.
́
Chem. Soc. Rev. 2009, 38, 1099.
(15) Alkyl-ligand-induced ground-state destabilization has been
invoked to explain the rates of C−H bond-forming reductive elimination
from a series of zirconocene complexes: (a) Pool, J. A.; Lobkovsky, E.;
Chirik, P. J. Organometallics 2003, 22, 2797. Bulkier alkyl groups increase
the rate of C−H bond-forming reductive elimination from phosphine-
ligated Pt complexes: (b) Abis, L.; Sen, A.; Halpern, J. J. Am. Chem. Soc.
1978, 100, 2915. (c) Halpern, J. Acc. Chem. Res. 1982, 15, 332. For
insightfulstudiesontheeffectsofstericsandelectronicsontherateofC−
C bond-forming reductive elimination from phosphine-ligated Pd
complexes, see ref 13e. For examples where steric crowding inhibits
reductive elimination, see: (d) Ghosh, R.; Zhang, X.; Achord, P.; Emge,
T. J.; Krigh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2007, 129,
853.
(16) In Scheme 1B, the structures of 1a and 1b are illustrative and have
not been confirmed experimentally. In the Murai hydroarylation,
computational studies support reductive elimination from a complex
where the alkyl ligand is perpendicular to the plane of the arene:
Matsubara, T.; Koga, N.; Musaev, D. G.; Morokuma, K. Organometallics
2000, 19, 2318.
(17) The following bite angles are reported in ref 14a: BINAP, 92.4°;
dppm, 72°; dppe, 85°; dppp, 91°; and dppb, 97.7°. A wide bite angle
ligand may provide destabilization by compressing the aryl−Ir−alkyl
bond angle and/or by providing a more sterically demanding
coordination sphere. A better correlation to ligand bite angle than to
ligand buried volume is observed. This latter parameter quantifies ligand
steric properties: Clavier, H.; Nolan, S. P. Chem. Commun. 2010, 46, 841.
(18) (R)-SDP, which was used by Shibata to promote branch-selective
hydroheteroarylation at the 2-position of indoles (see ref 8), is not a
suitable ligand and provides only traces (<5%) of 3a/4.
(5) Cobalt: (a) Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 400.
(b) Lee, P.-S.; Yoshikai, N. Angew. Chem., Int. Ed. 2013, 52, 1240. In this
latter report, formal carbonyl-directed, branch-selective hydroarylation
can be achieved but requires the formation and subsequent hydrolysis of
the imine directing group. Bis-alkylation was problematic in cases where
two ortho sites were available.
(6) Ruthenium: Uchimaru, Y. Chem. Commun. 1999, 1133.
(7) Branch-selective, nondirected alkene hydroheteroarylation reac-
tions enable the coupling of specific heterocycles and styrenes:
(a) Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74,
6410. (b) Nakao, Y.; Kashikara, N.; Kanyiva, K. S.; Hiyama, T. Angew.
Chem., Int. Ed. 2010, 49, 4451.
(8) Specific combinations of N-based directing group and phosphine
ligand promote linear- or branch-selective hydroheteroarylation at the 2-
position of indoles: Shibata, T.; Ryu, N.; Pan, S. J. Am. Chem. Soc. 2012,
134, 17474.
(9) Styrenes represent “special cases” and often lead to significant levels
of branched products: (a) Tanaka, M.; Watanabe, Y.; Mitsudo, T.-a.;
Takegami, Y. Bull. Chem. Soc. Jpn. 1974, 47, 1698. (b) Casey, C. P.;
Petrovich, L. M. J. Am. Chem. Soc. 1995, 117, 6007. (c) Jiang, Y.-Y.; Li, Z.;
Shi, J. Organometallics 2012, 31, 4356. See also ref 4g.
(10) Secondary alkyl organometallics (e.g., organoboron derivatives)
give intermediates that undergo competitive and reversible β-hydride
elimination during Pd-catalyzed cross-coupling, which leads to linear
products. For selected examples that circumvent this problem, see:
(a) Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A. J. Am.
Chem. Soc. 2008, 130, 9257. (b) Imao, D.; Glasspoole, B. W.; Laberge, V.
S.; Crudden, C. M. J. Am. Chem. Soc. 2009, 131, 5024. For selected
examples of alternative cross-coupling approaches, see: (c) Iwai, Y.;
Gligorich, K. M.; Sigman, M. S. Angew. Chem., Int. Ed. 2008, 47, 3219.
(d) Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J. Am. Chem.
Soc. 2011, 133, 389. (e) Wisniewska, H. M.; Swift, E. C.;Jarvo, E. R. J. Am.
Chem. Soc. 2013, 135, 9083. For the products described here, a
conventional Pd-catalyzed cross-coupling strategy involves pre-install-
ation of the stereocenter on either the nucleophilic or electrophilic
partner. An asymmetric hydroarylation strategy combines stereocenter
creation with C−C bond formation and provides greater step/atom
economy. We note that processes of this type provide a method to
(19) Our qualitative observations indicate the following ranking of
directing group efficiency: tertiary amides > secondary amides ∼ ketones
> esters. A detailed study will be reported in due course.
(20) Secondary directing effects of fluoro and methoxy substituents
have been noted in other metal-catalyzed hydroarylation processes. For
example, see: Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2011,
133, 17283 and references cited therein.
(21) Hydroarylation of styrene with 2q under “standard” conditions,
but with H2O (3000 mol%) as an additive, afforded 3q in 59% yield with
selectivities comparable to those shown in Table 3.
(22) Carbonyl-directed metal insertion into C(sp3)−H bonds adjacent
to nitrogen has been exploited in catalysis: Shibata, T.; Hirashima, H.;
Kasagawa, M.; Tsuchikama, K.; Endo, K. Synlett 2011, 2171.
D
dx.doi.org/10.1021/ja505776m | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX