Organic Letters
Letter
(eq 2) indicate that the mechanism in Figure 3 also exists as a
minor pathway.
Yorimitsu (Kyoto University) for suggesting the crossover
experiment. We also thank Yui Suzuki (Tokyo University of
Science) for her assistance for this work.
REFERENCES
■
(1) Selected reviews of transition-metal-catalyzed cyclization of
alkynoic acids, and the related reactions: (a) Nakamura, I.;
Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (b) Alonso, F.; Beletskaya,
I. P.; Yus, M. Chem. Rev. 2004, 104, 3079. (c) Weibel, J.-M.; Blanc, A.;
Pale, P. Chem. Rev. 2008, 108, 3149. (d) Krause, N.; Winter, C. Chem.
Rev. 2011, 111, 1994.
(2) Selected examples of transition-metal-catalyzed cyclization of
alkynoic acids: (a) Nebra, N.; Monot, J.; Shaw, R.; Martin-Vaca, B.;
Bourissou, D. ACS Catal. 2013, 3, 2930. (b) Chaudhuri, G.; Kundu, N.
G. J. Chem. Soc., Perkin Trans. 2000, 1, 775. (c) Nolla-Saltiel, R.; Robles-
Marín, E.; Porcel, S. Tetrahedron Lett. 2014, 55, 4484.
(3) Rh-catalyzed redox-neutral coupling of terminal alkynes with
carboxylic acids: (a) Lumbroso, A.; Koschker, P.; Vautravers, N. R.;
Breit, B. J. Am. Chem. Soc. 2011, 133, 2386. (b) Lumbroso, A.; Abermil,
N.; Breit, B. Chem. Sci. 2012, 3, 789. (c) Gellrich, U.; Meißner, A.;
Steffani, A.; Kahny, M.; Drexler, H.-J.; Heller, D.; Plattner, D. A.; Breit,
̈
Figure 3. A possible minor pathway.
B. J. Am. Chem. Soc. 2014, 136, 1097. (d) Koschker, P.; Kahny, M.; Breit,
̈
B. J. Am. Chem. Soc. 2015, 137, 3131. (e) Koschker, P.; Breit, B. Acc.
Chem. Res. 2016, 49, 1524.
In summary, we have developed an unprecedented entry for
intramolecular cyclization, which involves catalytic conversion of
alkynoic acids to 6-membered heterocyclic compounds contain-
ing a highly oxidized quaternary allylic carbon in the presence of
Pd(0)/tBuXPhos. No stoichiometric additive, such as a base, was
required, and therefore, various types of alkynoic acids were
available for this transformation. The preliminary mechanistic
studies implied that the allene species is a possible intermediate.
Further studies of this unique method must involve the
following: (i) a detailed mechanistic investigation, (ii)
application to other types of substrates such as carboxamides,
and (iii) extension to an enantioselective version. These
experiments are now underway in this laboratory.
(4) (a) Lin, F.; Song, Q.; Gao, Y.; Cui, X. RSC Adv. 2014, 4, 19856.
(b) Karad, S. N.; Chung, W.-K.; Liu, R.-S. Chem. Commun. 2015, 51,
13004 and references therein.
(5) The structure of 2a was determined by 1H and 13C NMR, NOESY,
1
1H-1H COSY, HMQC, and HMBC analyses. The H and 13C NMR
spectroscopic data of 2a are also in good agreement with those reported
in the following literature. Carrillo-Arcos, U. A.; Rojas-Ocampo, J.;
Porcel, S. Dalton Trans. 2016, 45, 479.
(6) CCDC No. 1569284 (2m). The crystallographic data can be
obtained free of charge from The Cambridge Crystallographic Data
Centre.
(7) Although the details of the H/D exchange are not clear, both intra-
and intermolecular mechanisms including β-hydride elimination and
reinsertion via [Pd]−H and [Pd]−D species are presumable.
(8) Selected examples: (a) Trost, B. M.; Schmidt, T. J. Am. Chem. Soc.
1988, 110, 2301. (b) Kadota, I.; Shibuya, A.; Gyoung, Y. S.; Yamamoto,
Y. J. Am. Chem. Soc. 1998, 120, 10262. (c) Kadota, I.; Lutete, L. M.;
Shibuya, A.; Yamamoto, Y. Tetrahedron Lett. 2001, 42, 6207. (d) Patil,
N. T.; Huo, Z.; Bajracharya, G. B.; Yamamoto, Y. J. Org. Chem. 2006, 71,
3612. (e) Chen, Q.-A.; Chen, Z.; Dong, V. M. J. Am. Chem. Soc. 2015,
137, 8392.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
X-ray crystallographic data for 2m (CIF)
Experimental procedures and characterization data for 1,
2, and 3; X-ray crystallographic data for 2m (PDF)
(9) Selected examples of oxidative addition of propargylic C−OAr
bond to palladium(0): (a) Pal, M.; Parasuraman, K.; Yeleswarapu, K. R.
Org. Lett. 2003, 5, 349. (b) Rambabu, D.; Bhavani, S.; Swamy, N. K.;
Basaveswara Rao, M. V.; Pal, M. Tetrahedron Lett. 2013, 54, 1169.
(10) Selected examples and reviews: (a) Su, C.-C.; Chen, J.-T.; Lee, G.-
H.; Wang, Y. J. Am. Chem. Soc. 1994, 116, 4999. (b) Tsuji, J.; Mandai, T.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2589. (c) Baize, M. W.; Blosser, P.
W.; Plantevin, V.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A.
Organometallics 1996, 15, 164. (d) Tsutsumi, K.; Ogoshi, S.; Nishiguchi,
S.; Kurosawa, H. J. Am. Chem. Soc. 1998, 120, 1938. (e) Tsutsumi, K.;
Kawase, T.; Kakiuchi, K.; Ogoshi, S.; Okada, Y.; Kurosawa, H. Bull.
Chem. Soc. Jpn. 1999, 72, 2687. (f) Ma, S. Eur. J. Org. Chem. 2004, 2004,
1175. (g) Guo, L.-N.; Duan, X.-H.; Liang, Y.-M. Acc. Chem. Res. 2011,
44, 111.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was partially supported by JSPS KAKENHI Grant
Number JP16K21400 and by a Research Grant from Shorai
Foundation for Science and Technology, a Grant from Central
Glass Co., Ltd. Award in Synthetic Organic Chemistry, Japan,
and a Research Grant from Takahashi Industrial and Economic
Research Foundation. We are grateful to Prof. Dr. Hideki
D
Org. Lett. XXXX, XXX, XXX−XXX