Paper
Journal of Materials Chemistry A
palladium-catalyzed Suzuki and Sonogashira couplings as well
as carbon–sulfur bond formation reaction. Using this method-
ology, a library of 4,8-functionalized benzo[1,2-b:4,5-b0]dithio-
phene monomers have been developed with aryl, ethynyl,
arylethynyl, alkylthio and arylthio substituents. The absorption
and energy levels of BDT monomers can be ne-tuned by
adjusting the donating strength of the incorporated substitu-
ents. The as-prepared BDT monomers exhibit a bandgap
ranging from 2.48 to 3.34 eV and a relatively low HOMO energy
level. The high crystalline nature and hole mobility of BDT
monomers demonstrated for 5 and 17 shows that manipulating
the functionalization of BDT core can result in prodigious
differences in charge transport properties. High FET mobilities
of 0.061 cm2 Vꢀ1 sꢀ1 and 0.025 cm2 Vꢀ1 sꢀ1 were readily ach-
ieved for 5 and 17. The as-developed BDT monomers may be
promising donating units for constructing D–A narrow bandgap
polymers for high-performance solar cells and p-type FETs if
high mobility co-monomers are used and the resulted polymers
have highly ordered structures.
4 (a) Y. Huang, X. Guo, F. Liu, L. J. Huo, Y. N. Chen,
T. P. Russell, C. C. Han, Y. Li and J. Hou, Adv. Mater., 2012,
24, 3383; (b) B. Liu, X. Chen, Y. He, Y. Li, X. Xu, L. Xiao,
L. Liang and Y. Zou, J. Mater. Chem. A, 2013, 1, 570; (c)
M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang and
Y. Cao, J. Am. Chem. Soc., 2011, 13, 9638.
5 (a) P. Sista, M. C. Biewer and M. C. Stefan, Macromol. Rapid
Commun., 2012, 33, 9; (b) Y. Liang, Y. Wu, D. Feng,
S.-T. Tsai, H.-J. Son, G. Li and L. Yu, J. Am. Chem. Soc.,
2009, 131, 56.
6 (a) H. Zhou, L. Yang, S. Stoneking and W. You, ACS Appl.
Mater. Interfaces, 2010, 2, 1377; (b) C. Piliego,
T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge
and J. M. J. Frchet, J. Am. Chem. Soc., 2010, 132, 7595; (c)
H. Zhou, L. Yang, S. C. Price, K. J. Knight and W. You,
Angew. Chem., Int. Ed., 2010, 49, 7992.
7 P. Beimling and G. Kobmehl, Chem. Ber., 1986, 119, 3198.
8 (a) K. Shiraishi and T. Yamamoto, Synth. Met., 2002, 130, 139;
(b) H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu and G. Xu,
Chem. Mater., 2006, 18, 3237; (c) H. Pan, Y. Li, Y. Wu, P. Liu,
B. S. Ong, S. Zhu and G. Xu, J. Am. Chem. Soc., 2007, 129,
4112.
9 J. Hou, M.-H. Park, S. Zhang, Y. Yao, L.-M. Chen, J.-H. Li and
Y. Yang, Macromolecules, 2008, 41, 6012.
10 (a) L. Huo, X. Guo, S. Zhang, Y. Li and J. Hou,
Macromolecules, 2011, 44, 4035; (b) R. Duan, L. Ye, X. Guo,
Y. Huang, P. Wang, S. Zhang, J. Zhang, L. Huo and J. Hou,
Macromolecules, 2012, 45, 3032.
11 J. Kim, C. E. Song, H. U. Kim, A. C. Grimsdale, S.-J. Moon,
W. S. Shin, S. K. Choi and D.-H. Hwang, Chem. Mater.,
2013, 25, 2722.
12 J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu,
Z. Li, G. He, C. Li, B. Kan, M. Li and Y. Chen, J. Am. Chem.
Soc., 2013, 135, 8484.
Acknowledgements
This work is supported by the National Natural Science Foun-
dation of China (grant no. 21074055), the Program for New
Century Excellent Talents in University (NCET-12-0633), The
Jiangsu Province Natural Science Fund for Distinguished Young
scholars (BK20130032), the Doctoral Fund of Ministry of
Education of China (no. 20103219120008), and the Funda-
mental Research Funds for the Central Universities
(30920130111006). The authors thank Dr Baojing Zhou for the
theoretical calculation.
Notes and references
13 M. C. Scharber, D. Mu, M. Koppe, P. Denk, C. Waldauf,
A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
1 (a) H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang,
L. Yu, Y. Wu and G. Li, Nat. Photonics, 2009, 3, 649; (b) 14 E. Zhu, J. Hai, Z. Wang, B. Ni, Y. Jiang, L. Bian, F. Zhang and
G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Mater., W. Tang, J. Phys. Chem. C, 2013, 117, 24700.
2009, 21, 1323; (c) J. Hou, H. Chen, S. Zhang, R. I. Chen, 15 R. S. Kularatne, P. Sista, H. Q. Nguyen, M. P. Bhatt,
Y. Yang, Y. Wu and G. Li, J. Am. Chem. Soc., 2009, 131,
15586; (d) H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu
M. C. Biewer and M. C. Stefan, Macromolecules, 2012, 45,
7855.
and W. You, Angew. Chem., Int. Ed., 2011, 50, 2995; (e) 16 (a) L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha,
L. Bian, E. Zhu, J. Tang, W. Tang and F. Zhang, Prog.
Polym. Sci., 2012, 37, 1292.
2 (a) L. Huo and J. Hou, Polym. Chem., 2011, 2, 2453; (b)
Y. He, G. Li and Y. Yang, J. Am. Chem. Soc., 2012, 134, 10071;
(b) J. Yuan, L. Xiao, B. Liu, Y. Li, Y. He, C. Pan and Y. Zou, J.
Mater. Chem. A, 2013, 1, 10639.
D. H. Lee, J. Shin, M. J. Cho and D. H. Choi, Chem. 17 (a) A. G. Crawford, Z. Liu, I. A. I. Mkhalid, M.-H. Thibault,
Commun., 2013, 49, 3896; (c) C. Bathula, C. E. Song,
S. Badgujar, S.-J. Hong, I.-N. Kang, S.-J. Moon, J. Lee,
S. Cho, H.-K. Shim and S.-K. Lee, J. Mater. Chem., 2012, 22,
22224; (d) Q. Meng, L. Jiang, Z. Wei, C. Wang, H. Zhao,
H. Li, W. Xu and W. Hu, J. Mater. Chem., 2010, 20, 10931.
N. Schwarz, G. Alcaraz, A. Steffen, J. C. Collings,
A. S. Batsanov, J. A. K. Howard and T. B. Marder, Chem.–
Eur. J., 2012, 18, 5022; (b) S. Shinamura, I. Osaka,
E. Miyazaki, A. Nakao, M. Yamagishi, J. Takeya and
K. Takimiya, J. Am. Chem. Soc., 2011, 133, 5024.
3 (a) L. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. Li and J. Hou, Angew. 18 D. Lee, S. W. Stone and J. P. Ferraris, Chem. Commun., 2011,
Chem., Int. Ed., 2011, 50, 9697; (b) H. G. Kim, C. Shim, J. Lee,
47, 10987.
J. Shin, E. C. Cho, S. G. Ihn, Y. S. Choi and Y. K. K. Cho, J. 19 (a) W. Tang, S.-P. Singh, K.-H. Ong and Z.-K. Chen, J. Mater.
Mater. Chem., 2012, 22, 17709; (c) J. W. Jung, J. W. Jo,
F. Liu, T. P. Russell and W. H. Jo, Chem. Commun., 2012,
48, 6933.
Chem., 2010, 20, 1497; (b) W. Tang, L. Ke, L. Tan, T. Lin,
T. Kietzke and Z.-K. Chen, Macromolecules, 2007, 40, 6164;
This journal is © The Royal Society of Chemistry 2014
J. Mater. Chem. A, 2014, 2, 13580–13586 | 13585