Journal of the American Chemical Society
Communication
Notes
be obtained in 1,1,2,2-tetrachloroethane-d2 at 120 °C (see SI).
The resonances in both the 1H and 13C NMR spectra are highly
resolved single resonances, indicative of a highly regular
structure. From IR spectroscopy it was again confirmed that
poly(3b)A is cis, but again we are reluctant to assign a tacticity.
The polymerization of all monomers presented in this work
(except the dimentholates) were investigated using a variety of
Mo and W imido alkylidene and Ru alkylidene initiators (see SI).
In some cases the monomer is polymerized, but the resulting
polymer is not stereoregular. Monomers 1a, 1b, and 1c were not
polymerized by the Ru initiators G2 or G3.
We conclude that A or B (alone or in the presence of
B(C6F5)3) will initiate the stereospecific polymerization of
several 7-isopropylidenenorbornadienes and 7-oxanorborna-
dienes. We also conclude that cis,syndiotactic and cis,isotactic
structures can both be formed employing the tungsten oxo MAP
initiators, the latter probably without inversion of configuration at
W.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
R.R.S. thanks the Department of Energy (DE-FG02-
86ER13564) for financial support. T.M.S. acknowledges the
financial support of the Chemical and Biological Technologies
Department of the Defense Threat Reduction Agency (DTRA-
CB) via grant BA12PHM123 in the “Dynamic Multifunctional
Materials for a Second Skin D[MS]2” program. We thank Dr.
Benjamin Autenrieth for his assistance with the high-temperature
NMR measurements for poly(3a)A and poly(3b)A.
REFERENCES
■
(1) (a) Ivin, K. J.; Mol, J. C. Olefin Metathesis and Metathesis
Polymerization; Academic Press: San Diego, 1997. (b) Ivin, K. J. Olefin
Metathesis; Academic Press: San Diego, 1983. (c) Buchmeiser, M. R.
Chem. Rev. 2000, 100, 1565. (d) Bielawski, C. W.; Grubbs, R. H. Prog.
Polym. Sci. 2007, 32, 1. (e) Smith, E.; Pentzer, E. B.; Nguyen, S. T. Polym.
Rev. 2007, 47, 419. (f) Feast, W. J.; Khosravi, E. New Methods Polym.
Synth. 1995, 69. (g) Buchmeiser, M. R. Chem. Rev. 2009, 109, 303.
(2) (a) Schrock, R. R. Dalton Trans. 2011, 40, 7484. (b) Schrock, R. R.
Acc. Chem. Res. 2014, DOI: 10.1021/ar500139s.
One piece of evidence in the literature suggests that cis,isotactic
and cis,syndiotactic structures can be formed with different MAP
initiators; although Mo(NC6F5)(CHR)(Me2Pyr)(OHMT) (R =
CMe2Ph) yields >98% cis,syndiotactic-poly(DCMNBD), Mo-
(NC6F5)(CHR)(Me2Pyr)(ODFT) (ODFT = decafluoro-
terphenoxide = O-2,6-(C6F5)2C6H3) yields 95% cis,91%
isotactic-poly(DCMNBD).14
(3) (a) Coates, G. W. Chem. Rev. 2000, 100, 1223. (b) Baugh, L. S.,
Canich, J. M., Eds. Stereoselective Polymerization with Single-Site Catalysts;
CRC Press: Boca Raton, FL, 2007.
We propose that a key issue that determines whether an
isotactic or syndiotactic structure is formed with a MAP catalyst
is the slow rate at which a five-coordinate metallacyclobutane
intermediate rearranges its configuration at the metal (aryloxide/
pyrrolide exchange) through a Berry-type process15 relative to the
rate at which the metallacyclobutane ring opens to give a
propagating species without rearrangement at the metal. In the
case of monomers that create some steric challenges, as with 1b,
both the rate of rearrangement of a five-coordinate metalla-
cyclobutane complex and the rate of opening the metalla-
cyclobutane to give the next alkylidene could be altered
dramatically, perhaps in opposite directions. Some form of
chain end control always remains a possibility in any given
circumstance, but the simplicity of the above proposal is
attractive. The facts that each structure can be formed with a
high degree of precision and specificity employing one MAP
initiator and different monomers, and that B(C6F5)3 can speed
up formation of one of these two stereoregular structures, are
surprising, but fascinating, developments.
(4) (a) McConville, D. H.; Wolf, J. R.; Schrock, R. R. J. Am. Chem. Soc.
1993, 115, 4413. (b) O’Dell, R.; McConville, D. H.; Hofmeister, G. E.;
Schrock, R. R. J. Am. Chem. Soc. 1994, 116, 3414. (c) Totland, K. M.;
Boyd, T. J.; Lavoie, G. G.; Davis, W. M.; Schrock, R. R. Macromolecules
1996, 29, 6114.
(5) (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Muller, P.; Hoveyda,
̈
A. H. J. Am. Chem. Soc. 2009, 131, 7962. (b) Flook, M. M.; Gerber, L. C.
H.; Debelouchina, G. T.; Schrock, R. R. Macromolecules 2010, 43, 7515.
(c) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. J. Am. Chem. Soc. 2011,
133, 1784. (d) Flook, M. M.; Borner, J.; Kilyanek, S.; Gerber, L. C. H.;
̈
Schrock, R. R. Organometallics 2012, 31, 6231.
(6) (a) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Muller, P.;
̈
Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 20754. (b) Peryshkov, D.
V.; Schrock, R. R. Organometallics 2012, 31, 7278. (c) Peryshkov, D. V.;
Forrest, W. P., Jr.; Schrock, R. R.; Smith, S. J.; Muller, P. Organometallics
̈
2013, 32, 5256.
(7) Forrest, W. P.; Axtell, J. C.; Schrock, R. R. Organometallics 2014, 33,
2313.
(8) (a) Stelzer, F.; Muelner, R.; Schlick, H.; Leising, G. NATO Sci. Ser.
II 2002, 56, 185. (b) Feast, W. J. NATO Sci. Ser. II 2002, 56, 177.
(c) Schimetta, M.; Stelzer, F. Macromol. Chem. Phys. 1994, 195, 2699.
(9) A rare example of a successful polymerization is that of 11-(α-
phenylbenzylidene)benzonorbornadiene, the diphenylmethylidene ana-
logue of 3a, by Mo(NAr)(CH-t-Bu)[OC(CF3)2Me]2, to yield a polymer
that is entirely cis and that is highly tactic with unusually simple 1H and
13C NMR spectra.8c This specificity must result from a chain end control
mechanism.
(10) Bazan, G. C.; Khosravi, E.; Schrock, R. R.; Feast, W. J.; Gibson, V.
C.; O’Regan, M. B.; Thomas, J. K.; Davis, W. M. J. Am. Chem. Soc. 1990,
112, 8378.
(11) Bazan, G. C.; Oskam, J. H.; Cho, H.-N.; Park, L. Y.; Schrock, R. R.
J. Am. Chem. Soc. 1991, 113, 6899.
Finally, it should be noted that a MAP catalyst is known to
catalyze formation of trans,isotactic-poly((+)-2,3-dicarbo-
methoxynorbornene).5d The mechanism of formation of the
trans,isotactic polymer is proposed to involve formation of a trans-
metallacyclobutane ring that flips over rapidly in a Berry-type
process (without exchanging the aryloxide and pyrrolide) before
it opens to give the propagating alkylidene.
ASSOCIATED CONTENT
■
S
* Supporting Information
(12) (a) Feast, W. J.; Khosravi, E. J. Fluorine Chem. 1999, 100, 117.
(b) Feast, W. J.; Millichamp, I. S. J. Mol. Catal. 1985, 28, 331.
(13) Gerber, L. C. H.; Schrock, R. R. Organometallics 2013, 32, 5573.
Experimental details for the syntheses and characterization of
new monomers and all polymers, along with a description of
NMR studies that prove two tacticities. This material is available
(14) Yuan, J.; Schrock, R. R.; Gerber, L. C. H.; Muller, P.; Smith, S. J.
̈
Organometallics 2013, 32, 2983.
(15) Moberg, C. Angew. Chem., Int. Ed. 2011, 50, 10290.
AUTHOR INFORMATION
■
Corresponding Author
10913
dx.doi.org/10.1021/ja506446n | J. Am. Chem. Soc. 2014, 136, 10910−10913