ACS Medicinal Chemistry Letters
Letter
Schwartz, T. W. G protein-coupled receptor 39 deficiency is associated
with pancreatic islet dysfunction. Endocrinology 2009, 150, 2577−2585.
(10) Tremblay, F.; Richard, A. M.; Will, S.; Syed, J.; Stedman, N.;
Perreault, M.; Gimeno, R. E. Disruption of G protein-coupled receptor
39 impairs insulin secretion in vivo. Endocrinology 2009, 150, 2586−
2595.
(11) Verhulst, P. J.; Lintermans, A.; Janssen, S.; Loeckx, D.;
Himmelreich, U.; Buyse, J.; Tack, J.; Depoortere, I. GPR39, a receptor
of the ghrelin receptor family, plays a role in the regulation of glucose
homeostasis in a mouse model of early onset diet-induced obesity. J.
Neuroendocrinol. 2011, 23, 490−500.
(12) Egerod, K. L.; Jin, C.; Petersen, P. S.; Wierup, N.; Sundler, F.;
Holst, B.; Schwartz, T. W. β-cell specific overexpression of GPR39
protects against streptozotocin-induced hyperglycemia. Int. J. Endo-
crinol. 2011, 1−8.
(13) Boehm, M.; Hepworth, D.; Loria, P. L.; Norquay, L. D.; Filipski,
K. J.; Chin, J. E.; Cameron, K. O.; Brenner, M.; Bonnette, P.; Cabral,
S.; Conn, E.; Ebner, D. C.; Gautreau, D.; Hadcock, J.; Lee, E. C. Y.;
Mathiowetz, A. M.; Morin, M.; Rogers, L.; Smith, A.; VanVolkenburg,
M.; Carpino, P. A. Chemical probe identification platform for orphan
GPCRs using focused compound screening: GPR39 as a case example.
ACS Med. Chem. Lett. 2013, 4, 1079−1084.
(14) Bassilana, F.; Carlson, A.; DaSilva, J. A.; Grosshans, B.; Vidal, S.;
Beck, V.; Wilmeringwetter, B.; Llamas, L. A.; Showalter, T. B.;
Rigollier, P.; Bourret, A.; Ramamurthy, A.; Wu, X.; Harbinski, F.;
Plonsky, S.; Lee, L.; Ruffner, H.; Grandi, P.; Schirle, M.; Jenkins, J.;
Sailer, A.; Bouwmeester, T.; Porter, J. A.; Meyer, V.; Finan, P. M.;
Tallarico, J. A.; Kelleher, J. F., III; Seuwen, K.; Jain, R. K.; Luchansky,
S. J. Target identification for a hedgehog pathway inhibitor reveals a
new role for the orphan receptor GPR39. Nature Chem. Biol. 2014, 10
(5), 343−349.
AUTHOR INFORMATION
Corresponding Author
*(S.P.) Tel: 617 871 3644. Fax: 617 871 4081. E-mail: stefan.
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the whole GPR39 team for stimulating scientific
discussions and in particular Heather Burks, Robert Damon,
MooJe Sung, and Scott Tria for valuable contributions to the
medicinal chemistry strategy as well as Lawrence Hamann for
the strong support of the program. We thank Fred Bassilana for
providing HEK293 cells expressing human GPR39 and Martin
Marro for discussions in regards to in vitro assays.
ABBREVIATIONS
■
HEK, human embryonic kidney; EC50, half maximal effective
concentration; IP1, inositol-1-phosphate; NMP, N-methyl-2-
pyrrolidone; PEG, polyethylene glycol; DMSO, dimethyl
sulfoxide; LE, ligand efficiency, calculated from −RT ln-
(EC50)/number of heavy atoms in the molecule; RLM, rat
liver microsome; Cl(h), hepatic clearance; F, bioavailability;
PSA, polar surface area; cAMP, cyclic adenosine mono-
phosphate; GLP-1, glucagon-like peptide-1; PD, pharmacody-
namic; DPP-IV, dipeptidyl peptidase IV
org) using the Clustal W algorithm and entries O43194, Q5U431, and
E9PTT1 for human, mouse, and rat GPR39 protein, respectively.
(16) Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand-efficiency: a
useful metric for lead selection. Drug Discovery Today 2004, 9, 430−
431.
(17) Cytochrom P450 mediated metabolism has been predicted
using Metasite from Molecular Discovery. See also Cruciani, G.;
Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.;
Vianello, R. MetaSite: Understanding metabolism in human
cytochromes from the perspective of the chemist. J. Med. Chem.
2005, 48, 6970−6979.
(18) Synthesis and secretion of intestinal proglucagon-derived
peptides by the STC-1 enteroendocrine cell line. Brubaker, P. L.;
Izzo, A.; Rocca, A. S. Can. J. Diabetes 2003, 27, 141−148.
(19) Merglen, A.; Theander, S.; Rubi, B.; Chaffard, G.; Wollheim, C.
B.; Maechler, P. Glucose sensitivity and metabolism-secretion coupling
studied during two-year continuous culture in INS-1E insulinoma cells.
Endocrinology 2004, 145, 667−678.
(20) Nagarathnam, D.; Dumas, J.; Hatoum-Mokdad, H.; Boyer, S.;
Pluempe, H. Preparation of pyrimidine derivatives for use in
pharmaceutical compositions as Rho-kinase inhibitors. PCT patent
application WO2003062227, 2003.
(21) Storjohann, L.; Holst, B.; Schwartz, T. W. Molecular mechanism
of Zn2+ agonism in the extracellular domain of GPR39. FEBS Lett.
2008, 582, 2583−2588.
(22) Ding, Y.; Longdregan, A. T.; Marino, J. P., Jr. Preparation of 2-
amino-1,3,5-triazine derivatives as soluble epoxide hydrolase (sEH)
inhibitors and their use. PCT patent application WO2009049154,
2009.
(23) Harden, D. B.; Mokrosz, M. J.; Strekowski, L. Addition and
substitution reactions of chloropyrimidines with lithium reagents. J.
Org. Chem. 1988, 53, 4137−4140.
(24) Akarte, A. S.; Srinivasan, B. P.; Gandhi, S. A novel long acting
DPP-IV inhibitor PKF-275-055 stimulates β-cell proliferation resulting
in improved glucose homeostasis in diabetic rats. Biochem. Pharmacol.
2012, 83, 241−252.
REFERENCES
■
(1) McKee, K. K.; Tan, C. P.; Palyha, O. C.; Liu, J.; Feighner, S. D.;
Hreniuk, D. L.; Smith, R. G.; Howard, A. D.; Van der Ploeg, L. H. T.
Cloning and characterization of two human G protein coupled
receptor genes (GPR38 and GPR39) related to the growth hormone
secretagogue and neurotensin receptors. Genomics 1997, 46, 426−434.
(2) Review: Popovics, P.; Stewart, A. J. GPR39: a Zn2+-activated G
protein-coupled receptor that regulates pancreatic, gastrointestinal and
neuronal functions. Cell. Mol. Life Sci. 2011, 68, 85−95.
(3) Egerod, K. L.; Holst, B.; Petersen, P. S.; Hansen, J. B.; Mulder, J.;
Hokfelt, T.; Schwartz, T. W. GPR39 splice variants versus antisense
gene LYPD1: expression and regulation of gastrointestinal tract,
endocrine pancreas, liver and white adipose tissue. Mol. Endocrinol.
2007, 21, 1685−1698.
(4) Holst, B.; Egerod, K. L.; Schild, E.; Vickers, S. P.; Cheetham, S.;
Gerlach, L.-O.; Storjohann, L.; Stidsen, C. E.; Jones, R.; Beck-
Sickinger, A. G.; Schwartz, T. W. GPR39 signaling is stimulated by
zinc ions but not by obestatin. Endocrinology 2007, 148, 13−20.
(5) Yasuda, S.-I.; Miyazaki, T.; Munechika, K.; Yamashita, M.; Ikeda,
Y.; Kamizono, A. Isolation of Zn2+ as an endogenous agonist of
GPR39 from fetal bovine serum. J. Recept. Signal Transduction Res.
2007, 27, 235−246.
(6) Dittmer, S.; Sahin, M.; Pantlen, A.; et al. The constitutively active
orphan G-protein-coupled receptor GPR39 protects from cell death by
increasing secretion of pigment epithelium-derived growth factor. J.
Biol. Chem. 2008, 283, 7074−7081.
̈
(7) Moechars, D.; Depoortere, I.; Moreaux, B.; de Smet, B.; Goris, I.;
Hoskens, L.; Daneels, G.; Kass, S.; Ver Donck, L.; Peeters, T.; Coulie,
B. Altered gastroinstestinal and metabolic function in the GPR39-
obestatin receptor-knockout mouse. Gastroenterology 2006, 131,
1131−1141.
(8) Sharir, H.; Zinger, A.; Nevo, A.; Sekler, I.; Hershfinkel, M. Zn2+
released from injured cells via the Zn2+-sensing receptor, ZnR, to
trigger signaling leading to epithelial repair. J. Biol. Chem. 2010, 285,
26097−26106.
(9) Holst, B.; Egerod, K. L.; Jin, C.; Petersen, P. S.; Østergaard, V.;
Hald, J.; Sprinkel, A. M. E.; Størling, J.; Mandrup-Poulsen, T.; Holst, J.
J.; Thams, P.; Ørskov, C.; Wierup, N.; Sundler, F.; Madsen, O. D.;
E
dx.doi.org/10.1021/ml500240d | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX