COMMUNICATIONS
[18] a) T. Sasaki, K. Minamoto, H. Itoh, J. Org. Chem. 1978, 43, 2320;
b) Z. G. Wang, X. F. Zhang, Y. Ito, Y. Nakahara, T. Ogawa,
Carbohydr. Res. 1996, 295, 25.
[19] For a recent example featuring simultaneous removal of 17 benzyl
groups, see: W. Frick, A. Bauer, J. Bauer, S. Wied, G. Müller,
Biochemistry 1998, 37, 13421.
[20] a) L. M. Likhosherstov, O. S. Novikova, V. A. Derevitskaja, N. K.
Kochetkov, Carbohydr. Res. 1986, 146, C1; b) S. T. Cohen-Anisfeld,
P. T. Lansbury, Jr., J. Am. Chem. Soc. 1993, 115, 10531.
[21] HBTU/HOBt: a) R. Knorr, A. Trzeciak, W. Bannwarth, D. Gillessen,
Tetrahedron Lett. 1989, 30, 1927; b) A. Speicher, T. Klaus, T. Eicher, J.
Prakt. Chem. 1998, 340, 581.
ordinary progress in the field of oligosaccharide and glyco-
peptide synthesis. Given the extendibility of this chemistry to
virtually any type of saccharide presentation and the capacity,
in principle, for ligation of the pentapeptide construct to
larger polypeptide or protein domains,[24] the synthesis of
sequence-defined homogeneous glycopeptides, and thence
glycoproteins, is at hand. Studies directed toward reaching
fully functional glycoproteins by total synthesis are underway.
Received: January 22, 2001 [Z16470]
[22] Analysis of the fine specificities of 11 mouse monoclonal antibodies
reactive with H-type2 blood group determinants: K. Furukawa, S.
Welt, B. W. T. Yin, H.-J. Feickert, T. Takahashi, R. Ueda, K. O. Lloyd,
Mol. Immunol. 1990, 27, 723.
[1] a) P. Burda, M. Aebi, Biochem. Bioophys. Acta 1999, 1426, 239;
b) R. A. Dwek, Chem. Rev. 1996, 96, 683; c) R. A. Dwek, Science
1995, 269, 1234; d) A. Varki, Glycobiology 1993, 3, 97.
[23] Actually, these data demonstrate that, at the least, one of the two
H-type2 determinants in 1 is immunorecognized. They do not prove
that both H-type subunits in 1 are recognized, although this is
presumably the case.
[2] a) S. E. OꢁConnor, B. Imperiali, Chem. Biol. 1996, 3, 803; b) B.
Imperiali, S. E. OꢁConnor, Curr. Opin. Chem. Biol. 1999, 3, 643.
[3] L. H. Shevinsky, B. B. Knowles, I. Damjanov, D. Solter, Cell 1982, 30,
697.
[24] a) P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. B. H. Kent, Science
1994, 266, 776; reviews: b) G. J. Cotton, T. W. Muir, Chem. Biol. 1999,
6, R247; c) L. A. Marcaurelle, C. R. Bertozzi, Chem. Eur. J. 1999, 5,
1384; d) G. G. Kochendoerfer, S. B. H. Kent, Curr. Opin. Chem. Biol.
1999, 3, 665.
[4] a) W. Van Dijk, G. A. Turner, A. Mackiewicz, Glycosyl. Dis. 1994, 1, 5;
b) W. Van Dijk, M. E. Van der Stelt, A. Salera, L. Dente, Eur. J. Cell
Biol. 1991, 55, 143.
[5] a) A. Kobata, Acc. Chem. Res. 1993, 26, 319; b) T. Feizi, Nature 1985,
314, 53.
[6] A. Varki, R. Cummings, J. Esko, H. Freeze, G. Hart, J. Marth,
Essentials of Glycobiology, Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, 1999.
[7] a) J. N. Beitter, R. E. Means, R. C. Desrosiers, Nat. Med. 1998, 4, 678;
b) K. O. Lloyd, Am. J. Clin. Pathol. 1987, 87, 129.
[8] ªThe Molecular Basis of Blood Diseasesº: J. B. Lowe in Red Cell
Membrane Antigens (Eds.: G. Stamatoyannopoulos, A. W. Nienhutis,
P. W. Majeruis, H. Varmus), Saunders, Philadelphia, 1994, pp. 293 ±
330.
[9] For a review on the syntheses of O- and N-linked glycopeptides, see:
a) G. Arsequell, G. Valencia, Tetrahedron: Asymmetry 1997, 8, 2839;
b) G. Arsequell, G. Valencia, Tetrahedron: Asymmetry 1999, 10, 3045.
For examples of chemical and chemoenzymatic syntheses of high
mannose linked glycopeptides, see: c) I. Matsuo, Y. Nakahara, Y. Ito,
T. Nukuda, V. Nakara, T. Ogawa, Bioorg. Med. Chem. 1995, 3, 1455;
d) Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562; e) Z. W. Guo,
Y. Nakahara, T. Ogawa, Angew. Chem. 1997, 109, 1527; Angew. Chem.
Int. Ed. 1997, 36, 1464; f) C. Unverzagt, Carb. Res. 1998, 305, 423; g) C.
Unverzagt, Angew. Chem. 1997, 109, 2078; Angew. Chem. Int. Ed.
Engl. 1997, 36, 1989; C. Unverzagt, Angew. Chem. 1996, 108, 2507;
Angew. Chem. Int. Ed. Engl. 1996, 35, 2350; C. Unverzagt, Angew.
Chem. 1994, 106, 1170; Angew. Chem. Int. Ed. Engl. 1994, 33, 1102;
h) M. Mitzuno, K. Handa, R. Iguchi, I. Muramoto, T. Kawakami, S.
Aimoto, K. Yamammoto, T. Inazu, J. Am. Chem. Soc. 1999, 121, 284;
i) R. R. Schmidt, R. R. Kinzy, Adv. Carbohydr. Chem. Biochem. 1994,
50, 21.
Enhanced Physical Properties in a Pentacene
Polymorph
Theo Siegrist,* Christian Kloc, Jan H. Schön,
Bertram Batlogg, Robert C. Haddon, Steffen Berg, and
Gordon A. Thomas
Pentacene is a highly promising material for application in
thin film transistor devices because of its recently reported
high mobilities and good semiconducting behavior.[1] For this
reason, we have carried out a program to grow single crystals
of unusually high purity and crystalline perfection to study the
intrinsic properties of organic semiconductors. We have
produced millimeter-sized crystals with electrically active
impurities at concentrations of the order of 1013 cm 3 (or one
impurity molecule per 108 pentacene molecules) by using a
vapor-phase deposition technique. Such crystals were used for
[10] For a definition of glycoprotein classification and nomenclature, see:
J. F. G. Vliegenthart, J. Montreuil, Glycoproteins (Eds.: J. F. G.
Vliegenthart, J. Montreuil, H. Schachter), Elsevier, New York, 1995,
pp. 13 ± 28.
[11] For an earlier version of the general strategy we employed to reach the
high mannose core system, see: P. H. Seeberger, P. F. Cirillo, S. Hu, X.
Beebe, M. T. Bilodeau, S. J. Danishefsky, Enantiomer 1996, 1, 311.
[12] S. J. Danishefsky, S. Hu, P. F. Cirillo, M. Eckhardt, P. H. Seeberger,
Chem. Eur. J. 1997, 3, 1617.
[13] a) P. Seeberger, M. Eckhardt, C. Gutteridge , S. J. Danishefky, J. Am.
Chem. Soc. 1997, 119, 10064; b) Z. G. Wang, X. Zhang, D. Live, S. J.
Danishefsky, Angew. Chem. 2000, 112, 3798; Angew. Chem. Int. Ed.
2000, 39, 3652.
[*] Prof. Dr. T. Siegrist,[] Dr. C. Kloc, Dr. J. H. Schön,
Prof. Dr. B. Batlogg,[] S. Berg, Prof. Dr. G. A. Thomas
Bell Laboratories, Lucent Technologies
600 Mountain Avenue, Murray Hill, NJ 07974 (USA)
Fax : (1)908-582-2521
Prof. Dr. R. C. Haddon
[14] With modification of the original procedure from: M. A. E. Shaban,
R. W. Jeanloz, Carbohydr. Res. 1976, 46, 138.
Departments of Chemistry and Physics
and Advanced Carbon Materials Center
University of Kentucky, Lexington, KY 40506-0055 (USA)
[15] a) R. Gigg, Am. Chem. Soc. Symp. Ser. 1977, 39, 253; b) Z. G. Wang, Y.
Ito, Y. Nakahara, T.Ogawa, Bioorg. Med. Chem. Lett. 1994, 4, 2805.
[16] S. J. Danishefsky, K. Koseki, D. A. Griffith, J. Gervay, J. M. Peterson,
F. E. McDonald, T. Oriyama, J. Am. Chem. Soc. 1992, 114, 8331.
[17] Piv2O (or Ac2O) is needed to dehydrate the initial adduct (amide) into
the phthalimide 10.
[ ] Other address:
Inorganic Chemistry 2, Lund University (Sweden)
[
] Other address:
Institute of Solid State Physics, ETH Zürich (Switzerland)
1732
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4009-1732 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 9