10.1002/anie.201709128
Angewandte Chemie International Edition
COMMUNICATION
[11] For carbometalation of ynamides, followed by trapping of the resulting
vinyl organometallic, see: a) H. Lingua, F. Vibert, D. Mouysset, D Siri,
M. P. Bertrand, L. Feray, Tetrahedron 2017, 49, 3183-3214. b) H.
Chechik-Lankin, S. Livshin, I. Marek, Synlett 2005, 2098-2100. c) Y.
Minko, M. Pasco, L. Lercher, M. Botoshansky, I. Marek, Nature 2012,
490, 522-526.
and the University of Vienna is acknowledged. L.L.B. thanks CAPES for a
Sandwich PhD fellowship.
Keywords: ynamide • preactivation • regioselectivity •
stereoselectivity • keteniminium
[12] N. Saito, K. Saito, M. Shiro, Y. Sato, Org. Lett. 2011, 13, 2718-2721.
[13] a) Y. Yang, L. Wang, J. Zhang, Y. Jin, G. Zhu, Chem. Commun. 2014,
50, 2347-2349. b) Y. Yang, L. Wang, F. Zhang, G. Zhu, J. Org. Chem.
2014, 79, 9319-9324. c) G. Liu, W. Kong, J. Che, G. Zhu, Adv.
Synth.Catal. 2014, 356, 3314-3318.
[1] a) L. Yet, Chem. Rev. 2003, 103, 4283-4306. b) R. Shen, C. T. Lin, E. J.
Bowman, B. J. Bowman, J. A. Porco, J. Am. Chem. Soc. 2003, 125,
7889-7901. c) S. Lin, Z.-Q. Yang, B. H. B. Kwok, M. Koldobskiy, C. M.
Crews, S. J. Danishefsky, J. Am. Chem. Soc. 2004, 126, 6347-6355. d)
M. J. Martín, L. Coello, R. Fernández, F. Reyes, A. Rodríguez, C.
Murcia, M. Garranzo, C. Mateo, F. Sánchez-Sancho, S. Bueno, C. de
Eguilior, A. Francesch, S. Munt, C. Cuevas, J. Am. Chem. Soc. 2013,
135, 10164-10171.
[14] V. Dwivedi, M. H. Babu, R. Kant, M. S. Reddy, Chem. Commun. 2015,
51, 14996-14999.
[15] M. Takimoto, S. S. Gholap, Z. Hou, Chem. Eur. J. 2015, 21, 15218-
15223.
[16] a) B. Peng, X. Huang, L.-G. Xie, N. Maulide, Angew. Chem. Int. Ed.
2014, 53, 8718-8721. b) C. Theunissen, B. Métayer, N. Henry, G.
Compain, J. Marrot, A. Martin-Mingot, S. Thibaudeau, G. Evano, J. Am.
Chem. Soc. 2014, 136, 12528-12531. c) M. Lecomte, G. Evano, Angew.
Chem. Int. Ed. 2016, 55, 4547-4551. d) V. Tona, S. Ruider, M. Berger,
S. Shaaban, L.-G. Xie, L. González, N. Maulide, Chem. Sci. 2016, 7,
6032-6040. e) D. Kaldre, B. Maryasin, D. Kaiser, O. Gajsek, L.
González, N. Maulide, Angew. Chem. Int. Ed. 2017, 56, 2212-2215.
[17] D. L. Smith, W. R. F. Goundry, H. W. Lam, Chem. Commun. 2012, 48,
1505-1507.
[2]
For reviews, see: a) K. Gopalaiah, H. B. Kagan, Chem. Rev. 2011, 111,
4599-4657. b) T. Courant, G. Dagousset, G. Masson, Synthesis 2015,
47, 1799-1826.
[3]
For selected recent examples, see: a) X.-M. Xu, L. Zhao, J. Zhu, M.-X.
Wang, Angew. Chem. Int. Ed. 2016, 55, 3799-3803. b) X.-Y. Bai, Z.-X.
Wang, B.-J. Li, Angew. Chem. Int. Ed. 2016, 55, 9007-9011. c) M.
Kretzschmar, T. Hodík, C. Schneider, Angew. Chem. Int. Ed. 2016, 55,
9788-9792. d) J.-W. Gu, Q.-Q. Min, L.-C. Yu, X. Zhang, Angew. Chem.
Int. Ed. 2016, 55, 12270-12274. e) J. Wu, C. Zhao, J. Wang, J. Am.
Chem. Soc. 2016, 138, 4706-4709. f) F. Zhao, N. Li, T. Zhang, Z.-Y.
Han, S.-W. Luo, L.-Z. Gong, Angew. Chem. Int. Ed. 2017, 56, 3247-
3251. g) E. Kumarasamy, R. Raghunathan, S. K. Kandappa, A.
Sreenithya, S. Jockusch, R. B. Sunoj, J. Sivaguru, J. Am. Chem. Soc.
2017, 139, 655-662.
[18] For our prior work using organozinc nucleophiles, see: a) B. S. Martins,
A. V. Moro, D. S. Lüdtke, J. Org. Chem. 2017, 82, 3334-3340. b) B. S.
Martins, D. S. Lüdtke, Eur. J. Org. Chem. 2014, 5364-5369. c) A. D.
Wouters, D. S. Lüdtke, Org. Lett. 2012, 14, 3962-3965. d) A. D.
Wouters, G. H. G. Trossini, H. A. Stefani, D. S. Lüdtke, Eur. J. Org.
Chem. 2010, 2351-2356. e) A. Misale, S. Niyomchon, M. Luparia, N.
Maulide, Angew. Chem. Int. Ed. 2014, 53, 7068-7073.
[4]
[5]
C. A. Zezza, M. B. Smith, Synth. Commun. 1987, 17, 729-740.
a) L. Wang, C. Liu, R. Bai, Y. Pan, A. Lei, Chem. Commun. 2013, 49,
7923-7925. b) B. M. Trost, J. J. Cregg, N. Quach, J. Am. Chem. Soc.
2017, 139, 5133-5139.
[19] For full optimization details and additional experiments, see the SI.
[20] Triflimide has lower acidity but also a less nucleophilic counteranion
than triflic acid. For authoritative references, see: a) S. Antoniotti, V.
Dalla, E. Duñach, Angew. Chem. Int. Ed. 2010, 49, 7860-7888. b) B.
Mathieu, L. Ghosez, Tetrahedron 2002, 58, 8219-8226. For recent uses
of triflimide in ynamide activation, see: c) D.V.Patil, S. W. Kim, Q. H.
Nguyen, H. Kim, S. Wang, T. Hoang, S.Shin, Angew.Chem. Int. Ed.
2017, 56, 3670 –3674 and ref. 16e.
[6]
[7]
a) S. Yudha, Y. Kuninobu, K. Takai, Org. Lett. 2007, 9, 5609-5611. b) L.
J. Gooßen, M. Arndt, M. Blanchot, F. Rudolphi, F. Menges, G. Niedner-
Schatteburg, Adv. Synth. Catal. 2008, 350, 2701-2707. c) N. Panda, R.
Mothkuri, J. Org. Chem. 2012, 77, 9407-9412.
a) K. Jouvin, A. Coste, A. Bayle, F. Legrand, G. Karthikeyan, K.
Tadiparthi, G. Evano, Organometallics 2012, 31, 7933-7947. b) H. Liu,
Y. Zhou, X. Yan, C. Chen, Q. Liu, C. Xi, Org. Lett. 2013, 15, 5174-5177.
c) A, Delforge, I. Georgiou, A. Kremer, J. Wouters, D. Bonifazi, Org.
Lett. 2016, 18, 4844-4847.
[21] Reaction using PhZnEt [generated in situ by the reaction of PhB(OH)2
and Et2Zn, according to ref 18] resulted in the arylated product in 46%
yield (by 1H NMR), alongside with 45% yield (by 1H NMR) of the
corresponding product of ethyl transfer. Both products were formed as
single (Z)-diastereomers.
[8]
For recent examples, see: a) B. Métayer, G. Compain, K. Jouvin, A.
Martin-Mingot, C. Bachmann, J. Marrot, G. Evano, S. Thibaudeau, J.
Org. Chem. 2015, 80, 3397-3410. b) L. Chen, L. Yu, Y. Deng, Y. Cui, G.
Bian, J. Cao, Org. Biomol. Chem. 2016, 14, 564-569. c) G. Zhu, S. Qiu,
Y. Xi, Y. Ding, D. Zhang, R. Zhang, G. He, H. Zhu, Org. Biomol. Chem.
2016, 14, 7746-7753. d) G. He, S. Qiu, H. Huang, G. Zhu, D. Zhang, R.
Zhang, H. Zhu, Org. Lett. 2016, 18, 1856-1859. e) Y. Yabuuchi, T.
Kuzuguchi, T. Yoshimura, J. Matsuo, Org. Lett. 2016, 18, 4951-4953. f)
B. Prabagar, S. Nayak, R. K. Mallick, R. Prasad, A. K. Sahoo, Org.
Chem. Front. 2016, 3, 110-115.
[22] Best results were obtained whenever the organometallic nucleophile is
used as a solution in either hexane, heptane, CH2Cl2 or toluene. In our
hands, the use of organometallic reagents containing any amounts of
THF or Et2O shuts down the reaction. All organometallics were used as
salt-free reagents.
[23] For recent reviews on the chemistry of keteniminium salts, see: a) G.
Evano, M. Lecomte, P. Thilmany, C. Theunissen, Synthesis 2017, 49,
3183-3214. b) G. Evano, C. Theunissen, M. Lecomte, Aldrichimica Acta
2015, 48, 59-70. c) C. Madelaine, V. Valerio, N. Maulide, Chem. Asian
J. 2011, 6, 2224-2239. d) G. Evano, A. Coste, K. Jouvin, Angew. Chem.
Int. Ed. 2010, 49, 2840-2859. e) K. A. Decorver, H. Li, A. G. Lohse, R.
Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064-
5106. For the use of ynamides as amide coupling reagents, see: f) L.
Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang, J. Zhao, J.
Am. Chem. Soc. 2016, 138, 13135-13138.
[9]
For recent examples, see: a) L. V. Graux, H. Clavier, G. Buono,
ChemCatChem 2014, 6, 2544-2548. b) E. Romain, C. Fopp, F. Chemla,
F. Ferreira, O. Jackowski, M. Oestreich, A. Perez-Luna, Angew. Chem.
Int. Ed. 2014, 53, 11333-11337. c) H. Huang, L. Tang, Q. Liu, Y. Xi, G.
He, H. Zhu, Chem. Commun. 2016, 52, 5605. d) S. Vercruysse, K.
Jouvin, O. Riant, G. Evano, Synthesis 2016, 48, 3373-3381. e) Y. Kim,
R. B. Dateer, S. Chang, Org. Lett. 2017, 19, 190-193.
[10] a) B. Gourdet, H. W. Lam, J. Am. Chem. Soc. 2009, 131, 3802-3803. b)
B. Gourdet, D. L. Smith, H. W. Lam, Tetrahedron 2010, 66, 6026-6031.
c) P. Valenta, P. J. Caroll, P. J. Walsh, J. Am. Chem. Soc. 2010, 132,
14179-14190. d) A. Basheer, I. Marek, Beilstein J. Org. Chem. 2010, 6,
77. d) Y. Minko, M. Pasco, H. Chechik, I. Marek, Beilstein J. Org. Chem.
2013, 9, 526-532. e) R. Sallio, M. Corpet, L. Habert, M. Durandetti, C.
Gosmini, I. Gillaizeau, J. Org. Chem. 2017, 82, 1254-1259.
This article is protected by copyright. All rights reserved.