N. Liu et al. / Bioorg. Med. Chem. Lett. 24 (2014) 3719–3723
3723
of THF/water/MeOH (v/v/v 1:1:1) for 4 h. Compound 7a: yield 73%, white solid,
mp 230.0–232 °C; 1H NMR (CDCl3) d ppm 2.14 (6H, s, 2ꢂ CH3),4.88 (2H, s, CH2),
5.51 (1H, s, NH) 5.99 (1H, s, ArH-6), 6.54 (2H, d, J = 8.4 Hz, ArH-20,60), 6.97 (1H,
s, ArH-3), 7.40 (2H, s, ArH-300,500), 7.41 (2H, d, J = 8.4 Hz, ArH-30,50); MS m/z (%)
385.2 (M+1, 100). Compound 7b: white solid, mp 201–203 °C; 1H NMR (CDCl3)
d ppm 2.13 (6H, s, 2ꢂ CH3), 2.56 (3H, s, NCH3), 3.58 (2H, s, NH2), 3.95 (2H, s,
ArCH2), 5.51 (1H, s, NH), 5.96 (1H, s, ArH-6), 6.53 (2H, d, J = 8.4 Hz, ArH-20,60),
6.93 (1H, s, ArH-3), 7.38 (2H, s, ArH-300,500), 7.39 (2H, d, J = 8.4 Hz, ArH-30,50);
MS m/z (%) 398.1 (M+1, 1), 358 (Mꢀ30, 100). Compound 7c: yield 83%, white
solid, mp 72.0–73.3 °C; 1H NMR (CDCl3) d ppm 0.49 (4H, m, CH2CH2), 2.14 (6H,
s, 2ꢂ CH3), 2.24 (3H, m, CH), 3.53 (2H, s, NH2), 4.00 (2H, s, ArCH2), 5.48 (1H, s,
NH), 5.96 (1H, s, ArH-6), 6.53 (2H, d, J = 8.8 Hz, ArH-20,60), 6.93 (1H, s, ArH-3),
7.38 (2H, s, ArH-300,500), 7.39 (2H, d, J = 8.8 Hz, ArH-30,50); MS m/z (%) 434.2
(M+1, 3), 367.2 (Mꢀ56, 100). Compound 7d: yield 38%, white solid, mp 76.0–
78.0 °C; 1H NMR (CDCl3) d ppm 1.79 (2H, f, J = 5.6 Hz, CH2), 2.13 (6H, s, 2ꢂ CH3),
3.01 (2H, t, J = 5.6 Hz, NCH2), 3.87 (2H, t, J = 5.6 Hz, CH2O), 3.95 (2H, s, ArCH2),
5.51 (1H, s, NH), 5.96 (1H, s, ArH-6), 6.54 (2H, d, J = 8.8 Hz, ArH-20,60), 6.86 (1H,
s, ArH-3), 7.39 (2H, s, ArH-300,500), 7.41 (2H, d, J = 8.8 Hz, ArH-30,50); MS m/z (%)
442.6 (M+1, 20), 367.2 (Mꢀ74, 100). Compound 7e: yield 40%, white solid, mp
210.2–212.0 °C; 1H NMR (CDCl3) d ppm 2.09 (3H, s, CH3), 2.08 (3H, s, CH3), 2.12
(6H, s, 2ꢂ CH3), 2.78 (4H, t, J = 4.8 Hz, CH2CH2), 3.05 (4H, s, J = 4.8 Hz, CH2CH2),
3.72 (2H, s, ArCH2), 5.87 (1H, s, NH), 6.01 (1H, s, ArH-3), 6.60 (2H, d, J = 8.4 Hz,
ArH-20,60), 7.44 (2H, d, J = 8.4 Hz), 7.69 (2H, s, ArH-300,500), 8.62 (1H, s, ArH-6);
MS m/z (%) 467.6 (M+1, 31), 367.3 (Mꢀ99, 100). Compound 7f: yield 33%, white
solid, mp 140.9–142.9 °C; 1H NMR (CDCl3) d ppm 1.28 (6H, d, J = 6.4 Hz, 2ꢂ
CH3), 2.14 (6H, s, 2ꢂ CH3), 3.81 (1H, q, J = 6.4 Hz, CH), 4,69 (2H, s, ArCH2), 5.53
(1H, s, NH), 5.96 (1H, s, ArH-6), 6.53 (2H, d, J = 8.4 Hz, ArH-20,60), 7.04 (1H, s,
ArH-3), 7.38 (2H, s, ArH-300,500), 7.40 (2H, d, J = 8.4 Hz, ArH-30,50); MS m/z (%)
position (such as 7a–b and 7d–g) might regulate the molecular
lipophilicity to meet desired drug criteria. Our optimization efforts
at the R2 position on the phenoxy ring (C-ring) indicated that a
more flexible and longer linear cyanovinyl (11 series) or, prefera-
bly, cyanoethyl (12 series) substituent, rather than a cyano group
(7 series) is crucial for high potency against both wild-type and
double-mutant drug-resistant viral strains (compare 7g–h, 11a–
b, and 12a–b). Consequently, a number of compounds from this
series are being considered for in vivo pharmacokinetic evaluation,
and the results will be reported later.
Acknowledgments
This investigation was supported by Grants 30930106 and
81120108022 from the Natural Science Foundation of China (NSFC)
to L.X., the National Megaprojects of China for Major Infectious Dis-
eases (2013ZX10001-006) to L.X. and S.J., and U.S. NIH Grant
(AI33066) to K.-H.L. This study was also supported in part by the
Taiwan Department of Health, China Medical University Hospital
Cancer Research Center of Excellence (DOH100-TD-C-111-005).
References and notes
427.4 (M+1, 100). Compound 7g: yield 33%, white solid, mp 140.9–142.9 °C; 1
H
NMR (CDCl3) d ppm 1.28 (6H, d, J = 6.4 Hz, 2ꢂ CH3), 2.14 (6H, s, 2ꢂ CH3), 3.81
(1H, q, J = 6.4 Hz, CH), 4.69 (2H, s, ArCH2), 5.53 (1H, s, NH), 5.96 (1H, s, ArH-6),
6.53 (2H, d, J = 8.4 Hz, ArH-20,60), 7.04 (1H, s, ArH-3), 7.38 (2H, s, ArH-300,500),
7.40 (2H, d, J = 8.4 Hz, ArH-30,50); MS m/z (%) 427.4 (M+1, 100). Compound 7h:
yield 34%, white solid, mp 161.0–162.8 °C; 1H NMR (CDCl3) d ppm 2.14 (9H, s,
2ꢂ CH3, COCH3), 3.55 (2H, s, NH2), 5.29 (2H, s, ArCH2), 5.52 (1H, s, NH), 6.00
(1H, s, ArH-6), 6.56 (2H, d, J = 8.4 Hz, ArH-20,60), 6.94 (1H, s, ArH-3), 7.39 (2H, s,
ArH-300,500), 7.42 (2H, d, J = 8.4 Hz, ArH-30,50); MS m/z (%) 427.5 (M+1, 62), 367
(Mꢀ99, 100). Compound 11a: 50% yield, white solid, mp 170.5–172.0 °C; 1H
NMR (CDCl3) d ppm 2.13 (6H, s, 2ꢂ CH3), 3.54 (5H, s, OCH3, NH2), 4.67 (2H, s,
CH2O), 5.51 (1H, s, NH), 5.79 (1H, d, J = 16.4 Hz, @CH), 6.03 (1H, s, ArH-6), 6.55
(2H, d, J = 8.8 Hz, ArH-20,60), 6.99 (1H, s, ArH-3), 7.17 (2H, s, ArH-300,500), 7.31
(2H, d, J = 16.4 Hz, CH@), 7.40 (2H, d, J = 8.8 Hz, ArH-30,50); MS m/z (%) 425.3
(M+1, 100). Compound 11b: 35% yield, white solid, mp 194.1–195.9 °C; 1H
NMR (CDCl3) d ppm 2.14 (6H, s, 2ꢂ CH3), 2.15 (3H, s, CH3CO), 3.53 (2H, s, NH2),
5.30 (2H, s, ArCH2O), 5.51 (1H, s, NH), 5.78 (1H, d, J = 16.8 Hz, @CH), 6.05 (1H, s,
ArH-6), 6.55 (2H, d, J = 8.8 Hz, ArH-20,60), 6.93 (1H, s, ArH-3), 7.17 (2H, s, ArH-
300,500), 7.30 (1H, d, J = 16.8 Hz, CH@), 7.40 (2H, d, J = 8.8 Hz, ArH-3); MS m/z (%)
393.2 (Mꢀ59, 100), 453.3 (M+1, 97.2). Compound 12a: 79% yield, white solid,
mp 103.6–104.8 °C; 1H NMR (CDCl3) d ppm 2.09 (6H, s, 2ꢂ CH3), 2.61(2H, t,
J = 7.2 Hz, CH2CN), 2.87 (2H, t, J = 7.2 Hz, ArCH2), 3.52 (3H, s, OCH3), 4.67 (2H, s,
CH2O), 5.56 (1H, s, NH), 6.03 (1H, s, ArH-6), 6.55 (2H, d, J = 8.8 Hz, ArH-20,60),
6.92 (2H, s, ArH-300,500), 6.99 (1H, s, ArH-3), 7.39 (2H, d, J = 8.8 Hz, ArH-30,50);
MS m/z (%) 427.3 (M+1, 100). Compound 12b: 40% yield, white solid, mp
164.1–165.7 °C; 1H NMR (DMSO-d6) d ppm 2.04 (6H, s, 2ꢂ CH3), 2.09 (3H, s,
COCH3), 2.78 (4H, s, 2ꢂ CH2), 4.58 (2H, s, NH2), 5.19 (2H, s, CH2O), 5.90 (1H, s,
NH), 6.54 (2H, d, J = 8.8 Hz, ArH-20,60), 6.87 (1H, s, ArH-6), 7.04 (2H, s, ArH-
300500), 7.45 (2H, d, J = 8.8 Hz, ArH-30,50), 8.08 (1H, s, ArH-3); MS m/z (%) 395.2
(Mꢀ59, 100), 455.3 (M+1, 17).
15. Synthetic procedure for 4-substituted 1,5-diarylbenzene-1,2-diamines (7a–h and
12a–b). A solution of diarylnitrobenzene in 20 mL of anhydrous EtOAc (for 7a–
c and 7e–f) or anhydrous EtOH (for 7d, 7g–h and 12a–b) in the presence of
excess Pd/C (5%) was shaken with hydrogen gas under 50–55 p.s.i. until the
hydrogen was no longer absorbed (ca. 4 h). The catalyst was filtered from the
solution and washed with EtOAc several times. After the solvent was removed
under reduced pressure, the residue was purified by flash column
chromatography (gradual elution: MeOH/CH2Cl2, 0–5%) with the CombiflashÒ
flash chromatography system (Teledyne ISCO Company, Inc., Lincoln, NE) to
obtain pure target compounds 7a–h and 12a–b. Otherwise, para-cyanovinyl-
compounds 11a and 11b were obtained from 9 and 10 by reaction with excess
iron powder in the presence of NH4Cl at reflux temperature in a mixed solvent
}