and their derivatives. Muchowski and co-workers have
developed a synthetic pathway for (()-conduramine A-1
from pyrrole.8 The first asymmetric synthesis of optically
pure (+)-conduramine F-1 was achieved by Paulsen and co-
workers,9 using homochiral polyols. Later, Hudlicky and co-
workers10 synthesized (+)-conduramine A-1 and (+)-
dihydroconduramine A-1 from homochiral cyclohexadienediol
and nitrosyl derivatives. Very recently, Studer and co-workers
reported an enantioselective nitroso Diels-Alder reaction and
its application in the synthesis of (-)-peracetylated condu-
ramine A-1.12b However, the syntheses of chiral condu-
ramines have been limited to methods that use dihydroxy-
diene10 and chiral building blocks, such as L-quebrachitol,9
D-glucose,11 and their derivatives.16,17
variety of functionalized cyclopentenones. We have also
applied this strategy to the synthesis of (()-untenone
efficiently.20 We have carried out the first hetero Diels-Alder
reactions of MOBs with nitroso dienophiles to access highly
functionalized heterocyclic molecules.21 We have published
intriguing results of highly diastereoselective and asymmetric
Diels-Alder reactions of MOBs with homochiral furans,
which lead to highly functionalized tricyclic ring systems
with four stereogenic centers.22 We have also developed
carbohydrate-templated asymmetric Diels-Alder reactions
of MOBs for the synthesis of optically active bicyclo[2.2.2]oct-
5-en-2-ones.23 On the basis of this knowledge, our efforts
turned toward the development of reactions of MOBs with
homochiral nitroso compounds for the syntheses of valuable
optically active intermediates for a wide variety of biologi-
cally important molecules. We herein report a facile and
convenient route for the synthesis of optically pure condu-
ramines starting from MOBs and homochiral nitroso com-
pounds, prepared from (1S)-(+)- and (1R)-(-)-10-camphor-
sulfonic acids.
Since MOBs (as a diene18,19 ) and nitroso dienophiles24
are reactive species, we generated these two species in situ.
MOBs were obtained from 2-methoxyphenols by oxidation
with DAIB in MeOH, and the homochiral nitroso compounds
were created from their hydroxylamine precursors with
Bu4NIO4. Combining the solutions of these two reactive
species, generated in situ at -10 °C, we produced an
optically active nitroso Diels-Alder adduct in a one-pot
operation. The chiral auxiliaries were chosen and prepared
from (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acids.25
Figure 1. Conduramines and various types of interesting natural
products containing conduramine frameworks.
Masked o-benzoquinones (MOBs),18 which are highly
reactive cyclohexa-2,4-dienones, can be generated by the
oxidation of easily accessible 2-methoxyphenols in methanol
with diacetoxyiodobenzene (DAIB) or bis(trifluoroacetoxy-
)iodobenzene (BTIB). In continuation of our ongoing re-
search program on the Diels-Alder reactions using MOBs,19
we have recently disclosed the results of hetero Diels-Alder
reactions of MOBs with singlet oxygen, which afford a
Accordingly, we synthesized the nitroso Diels-Alder
adduct 2, from 2-methoxyphenol 1 and chiral auxiliary A1
at -10 °C. It was obtained as the major product of this
reaction in 86% yield and 89% de. Upon simple recrystal-
lization, 2 was obtained in high de (>99%) (Scheme 1). The
(5) (a) Hudlicky, T.; Luna, H.; Rouden, J. J. Org. Chem. 1993, 58, 985–
987. (b) Hudlicky, T.; Rouden, J.; Luna, H.; Allen, S. J. Am. Chem. Soc.
1994, 116, 5099–5107. (c) Johnson, C. R.; Golebiowski, A.; Sundaram,
H.; Miller, M. W.; Dwaihy, R. L. Tetrahedron Lett. 1995, 36, 653–654.
(6) Nakajima, M.; Hasegawa, A.; Kurihara, N. Chem. Ber. 1962, 95,
2708–2713.
(19) (a) Yang, C.-S.; Liao, C.-C. Org. Lett. 2007, 9, 4809–4812. (b)
Hsu, D.-S.; Hsu, P.-Y.; Lee, Y.-C.; Liao, C.-C. J. Org. Chem. 2008, 73,
2554–2563. (c) Shiao, H.-Y.; Hsieh, H.-P.; Liao, C.-C. Org. Lett. 2008,
10, 449–452. (d) Lu, Y.-B.; Lee, T.-H.; Liu, W.-C.; Chuang, G. J.; Liao,
C.-C. Chem. Asian J. 2008, 3, 1422–1429. (e) Chen, A.-C.; Chuang, G. J.;
Villarante, N.; Liao, C.-C. Tetrahedron 2008, 64, 8907–8921. (f) Chang,
C.-P.; Chen, C.-H.; Chuang, G. J.; Liao, C.-C. Tetrahedron Lett. 2009, 50,
3414–3417. (g) Gao, S.-Y.; Chittimalla, S. K.; Chuang, G. J.; Liao, C.-C.
J. Org. Chem. 2009, 74, 1632–1639. (h) Hsu, D.-H.; Chou, Y.-Y.; Tung,
Y.-S.; Liao, C.-C. Chem.sEur. J. 2010, 16, 3121–3131.
(7) (a) Kresze, G.; Dittel, W.; Melzer, H. Liebigs Ann. Chem. 1981,
224–228. (b) Hudlicky, T.; Luna, H.; Olivo, H. F.; Andersen, C.; Nugent,
T.; Price, J. D. J. Chem. Soc., Perkin Trans. 1 1991, 2907–2916.
(8) Toung, R. L.; Liu, Y.; Muchowski, J. M.; Wu, Y.-L. Tetrahedron
Lett. 1994, 35, 1639–1642.
(9) Paulsen, H.; Roben, W.; Heiker, F. R. Chem. Ber. 1981, 114, 3242–
3253.
(10) Hudlicky, T.; Olivo, H. F. Tetrahedron Lett. 1991, 32, 6077–6080.
(11) Knapp, S.; Naughton, A. B. J.; Murali Dhar, T. G. Tetrahedron
Lett. 1992, 33, 1025–1028.
(20) Kao, T. C.; Chuang, G. J.; Liao, C.-C. Angew. Chem., Int. Ed. 2008,
47, 7325–7327.
(21) Lin, K.-C.; Liao, C.-C. Chem. Commun. 2001, 1624–1625.
(22) Chou, Y.-Y.; Peddinti, R. K.; Liao, C.-C. Org. Lett. 2003, 5, 1637–
1640.
(12) (a) Werbitzky, O.; Klier, K.; Felber, H. Liebigs Ann. Chem. 1990,
267–270. (b) Jana, C. K.; Grimme, S.; Studer, A. Chem.sEur. J. 2009, 15,
9078–9084.
(23) Luo, S.-Y.; Jang, Y.-J.; Liu, J.-Y.; Chu, C.-S.; Liao, C.-C.; Hung,
S.-C. Angew. Chem., Int. Ed. 2008, 120, 8202–8205.
(13) Balci, M.; Stbeyaz, Y.; Secen, H. Tetrahedron 1990, 46, 3715–
3742.
(24) (a) Waldman, H. Synthesis 1994, 535–551. (b) Streith, J.; Defoin,
A. Synthesis 1994, 1107–1117. (c) Voget, P. F.; Miller, M. Tetrahedron
1998, 54, 1317–1348. (d) Ding, X.; Ukaji, Y.; Fujinami, S.; Inomata, K.
Chem. Lett. 2003, 32, 582–583. (e) Yamamoto, Y.; Yamamoto, H. J. Am.
Chem. Soc. 2004, 126, 4128–4129. (f) Yamamoto, H.; Momiyama, N. Chem.
Commun. 2005, 3514–3525. (g) Yamamoto, H.; Kawasaki, M. Bull. Chem.
Soc. Jpn. 2007, 80, 595–607.
(14) Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichimica Acta 1999,
32, 35–62.
(15) Lysek, R.; Vogel, P. Tetrahedron 2006, 62, 2733–2768.
(16) Chang, Y.-K.; Lee, B.-Y.; Kim, D. J.; Lee, G. S.; Jeon, H. B.; Kim,
K. S. J. Org. Chem. 2005, 70, 3299–3302.
(17) Pandey, G.; Tiwari, K. N.; Puranik, V. G. Org. Lett. 2008, 10, 3611–
3614.
(25) (a) Gouverneur, V.; Dive, G.; Ghosez, L. Tetrahedron: Asymmetry
1991, 2, 1173–1176. (b) Wang, Y.-C.; Lu, T.-M.; Elango, S.; Lin, C.-K.;
Tsai, C.-T.; Yan, T.-H. Tetrahedron: Asymmetry 2002, 13, 691–695. (c)
Elango, S.; Wang, Y.-C.; Cheng, C.-L.; Yan, T.-H. Tetrahedron Lett. 2002,
43, 3757–3759.
(18) (a) Singh, V. Acc. Chem. Res. 1999, 32, 324–333. (b) Liao, C.-C.;
Peddinti, R. K. Acc. Chem. Res. 2002, 35, 856–866. (c) Magadziak, D.;
Meek, S. J.; Pettus, T. R. R. Chem. ReV. 2004, 104, 1383–1430. (d) Liao,
C.-C. Pure Appl. Chem. 2005, 77, 1221–1234.
Org. Lett., Vol. 12, No. 11, 2010
2643