Journal of the American Chemical Society
Article
(15) Pan, J.; Kampf, J. W.; Ashe, A. J., III Organometallics 2009, 28,
506−511.
(16) (a) Molander, G. A.; Wisniewski, S. R. J. Org. Chem. 2014, 79,
6663−6678. (b) Molander, G. A.; Wisniewski, S. R.; Traister, K. M.
Org. Lett. 2014, 16, 3692−3695.
Author Contributions
⊥J.S.A.I. and J.L.M. contributed equally to this paper.
Notes
The authors declare no competing financial interest.
(17) (a) Fang, X.; Yang, H.; Kampf, J. W.; Holl, M. M. B.; Ashe, A. J.,
III Organometallics 2006, 25, 513−518. (b) Rohr, A. D.; Kampf, J. W.;
Ashe, A. J., III Organometallics 2014, 33, 1318−1321.
(18) (a) Grisdale, P. J.; Williams, J. L. R. J. Org. Chem. 1969, 34,
1675−1677. (b) Grisdale, P.; Glogowski, M.; Williams, J. L. R. J. Org.
Chem. 1971, 36, 3821−3824. (c) Glogowski, M. E.; Grisdale, P. J.;
Williams, J. L. R.; Regan, T. H. J. Organomet. Chem. 1973, 54, 51−60.
(d) Glogowski, M. E.; Williams, J. L. R. J. Organomet. Chem. 1980, 195,
123−135.
ACKNOWLEDGMENTS
■
This paper is dedicated to Prof. Lawrence T. Scott on the
occasion of his 70th birthday. Support has been provided by the
Defense Threat Reduction Agency (Grant HDTRA1-11-1-
0045). We thank Prof. Michael M. Haley for helpful
discussions. A.C. and A.M. are grateful to the Communaute
de Communes de Lacq (France) for financial support.
́
(19) (a) Harris, K. D. M.; Kariuki, B. M.; Lambropoulos, C.; Philp,
D.; Robinson, J. M. Tetrahedron 1997, 53, 8599−8612. (b) Robinson,
J.; Kariuki, B. M.; Philp, D.; Harris, K. D. M. Tetrahedron Lett. 1997,
38, 6281−6284.
REFERENCES
■
(1) For an overview, see the following: (a) Wang, C.; Dong, H.; Hu,
W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208−2267. (b) Wu, J.;
(20) Bosdet, M. J.; Jaska, C. A.; Piers, W. E.; Sorensen, T. S.; Parvez,
M. Org. Lett. 2007, 9, 1395−1398.
Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718−747. (c) Watson, M.
̈
D.; Fechtenkotter, A.; Mullen, K. Chem. Rev. 2001, 101, 1267−1300.
̈
̈
(21) Lu, J. S.; Ko, S. B.; Walters, N. R.; Kang, Y.; Sauriol, F.; Wang, S.
Angew. Chem., Int. Ed. 2013, 52, 4544−4548.
(d) Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471−1507.
Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 024313.
(2) For an overview, see the following: (a) Bosdet, M. J. D.; Piers, W.
E. Can. J. Chem. 2009, 87, 8−29. (b) Campbell, P. G.; Marwitz, A. J.;
Liu, S.-Y. Angew. Chem., Int. Ed. 2012, 51, 6074−6092. (c) Liu, Z.;
Marder, T. B. Angew. Chem., Int. Ed. 2008, 47, 242−244.
(3) For recent examples, see the following: (a) Braunschweig, H.;
Damme, A.; Jimenez-Halla, J. O.; Pfaffinger, B.; Radacki, K.; Wolf, J.
Angew. Chem., Int. Ed. 2012, 51, 10034−10037. (b) Brown, A. N.;
Zakharov, L. N.; Mikulas, T.; Dixon, D. A.; Liu, S.-Y. Org. Lett. 2014,
16, 3340−3343. (c) Xu, S.; Haeffner, F.; Li, B.; Zakharov, L. N.; Liu,
S.-Y. Angew. Chem., Int. Ed. 2014, 53, 6795−6799. (d) Abbey, E. R.;
Lamm, A. N.; Baggett, A. W.; Zakharov, L. N.; Liu, S.-Y. J. Am. Chem.
Soc. 2013, 135, 12908−12913. (e) Xu, S.; Mikulas, T. C.; Zakharov, L.
N.; Dixon, D. A.; Liu, S.-Y. Angew. Chem., Int. Ed. 2013, 52, 7527−
7531. (f) Xu, S.; Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. Soc. 2011,
133, 20152−20155. (g) Abbey, E. R.; Zakharov, L. N.; Liu, S.-Y. J. Am.
Chem. Soc. 2011, 133, 11508−11511. (h) Daly, A. M.; Tanjaroon, C.;
Marwitz, A. J.; Liu, S.-Y.; Kukolich, S. G. J. Am. Chem. Soc. 2010, 132,
5501−5506. (i) Marwitz, A. J.; McClintock, S. P.; Zakharov, L. N.; Liu,
S.-Y. Chem. Commun. 2010, 46, 779−781.
(22) Ashton, P. R.; Harris, K. D. M.; Kariuki, B. M.; Philp, D.;
Robinson, J. M. A.; Spencer, N. J. Chem. Soc., Perkin. Trans. 2 2001,
2166−2173.
(23) Bosdet, M. J.; Piers, W. E.; Sorensen, T. S.; Parvez, M. Angew.
Chem., Int. Ed. 2007, 46, 4940−4943.
(24) Hatakeyama, T.; Hashimoto, S.; Seki, S.; Nakamura, M. J. Am.
Chem. Soc. 2011, 133, 18614−18617.
(25) Wang, X. Y.; Lin, H. R.; Lei, T.; Yang, D. C.; Zhuang, F. D.;
Wang, J. Y.; Yuan, S. C.; Pei, J. Angew. Chem., Int. Ed. 2013, 52, 3117−
3120.
(26) Wang, X. Y.; Zhuang, F. D.; Wang, R. B.; Wang, X. C.; Cao, X.
Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2014, 136, 3764−3767.
(27) For an overview, see the following: (a) Anthony, J. E. Chem. Rev.
2006, 106, 5028−5048. (b) Anthony, J. E. Angew. Chem., Int. Ed. 2008,
47, 452−483.
(28) Hasegawa, T.; Takeya, J. Sci. Technol. Adv. Mater. 2009, 10,
024314.
(29) Sheraw, D.; Jackson, N.; Eaton, L.; Anthony, E. Adv. Mater.
2003, 15, 2009−2011.
(30) (a) Congreve, D. N.; Lee, J.; Thompson, N. J.; Hontz, E.; Yost,
S. R.; Reusswig, P. D.; Bahlke, M. E.; Reineke, S.; Van Voorhis, T.;
Baldo, M. A. Science 2013, 340, 334−337. (b) Burdett, J. J.; Bardeen,
C. J. J. Am. Chem. Soc. 2012, 134, 8597−8607. (c) Chan, W. L.; Ligges,
M.; Zhu, X. Y. Nat. Chem. 2012, 4, 840−845.
(31) Frisch, M. J.; et al. Gaussian 09, revision B.01; Gaussian, Inc.:
Wallingford, CT, 2009.
(32) Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem.
(4) For an overview of Dewar’s work, see the following: Fritsch, A. J.
Chem. Heterocycl. Compd. 1977, 30, 381−440.
(5) (a) Dewar, M. J. S.; Dietz, R. J. Chem. Soc. 1959, 2728−2730.
(b) Dewar, M. J. S.; Dietz, R. J. Org. Chem. 1961, 26, 3253−3256.
(6) (a) Dewar, M. J. S.; Gleicher, G. J.; Robinson, B. P. J. Am. Chem.
Soc. 1964, 86, 5698−5699. (b) Dewar, M.; Jones, R. J. Am. Chem. Soc.
1968, 90, 2137−2144. (c) Davis, F. A.; Dewar, M. J. S.; Jones, R.;
Worley, S. D. J. Am. Chem. Soc. 1969, 91, 2094−2097.
(7) (a) Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958,
3073−3076. (b) Dewar, M. J. S.; Kubba, V. P. Tetrahedron 1959, 7,
213−222. (c) Dewar, M. J. S.; Dietz, R.; Kubba, V. P.; Lepley, A. R. J.
Am. Chem. Soc. 1961, 83, 1754−1756. (d) Dewar, M. J. S.; Maitlis, P.
M. J. Am. Chem. Soc. 1961, 83, 187−193. (e) Dewar, M. J. S.; Kubba,
V. P. J. Am. Chem. Soc. 1961, 83, 1757−1760.
Phys. 1980, 72, 650−654.
(33) (a) Parr, R. G.; Yang, W. Functional Theory of Atoms and
Molecules; Oxford University Press: New York, 1989. (b) Frisch, M. J.;
Trucks,G. W.;Cheeseman, J. R. In Recent Development and Applications
of Modern Density Functional Theory, Theoretical and Computational
Chemistry; Semminario, J. M., Ed.; Elsevier: Amsterdam, 1996; Vol. 4;
pp 679−707. (c) Limacher, P. A.; Mikkelsen, K. V.; Luthi, H. P. J.
Chem. Phys. 2009, 130, 194114. (d) Kobayashi, R.; Amos, R. D. Chem.
(8) Chissick, S. S.; Dewar, M. J. S.; Maitlis, P. M. Tetrahedron. Lett.
1960, 1, 8−10.
̀
Phys. Lett. 2006, 420, 106−109. (e) Jacquemin, D.; Perpet e, E. A.;
(9) Dewar, M. J. S.; Kaneko, C.; Bhattacharjee, M. K. J. Am. Chem.
Soc. 1962, 84, 4884−4887.
Scalmani, G.; Frisch, M. J.; Kobayashi, R.; Adamo, C. J. Chem. Phys.
2007, 126, 144105.
(10) Dewar, M. J. S.; Poesche, W. H. J. Am. Chem. Soc. 1963, 85,
2253−2256.
(34) (a) Becke, A. D. Phys. Rev. 1988, 38, 3098−3100. (b) Becke, A.
D. J. Chem. Phys. 1993, 98, 5648−5652. (c) Lee, C.; Yang, W.; Parr, R.
G. Phys. Rev. B 1988, 37, 785−789. (d) Yanai, T.; Tew, D.; Handy, N.
Chem. Phys. Lett. 2004, 393, 51−57.
(11) Culling, G. C.; Dewar, M. J. S.; Marr, P. A. J. Am. Chem. Soc.
1964, 86, 1125−1127.
(12) Dewar, M. J. S.; Poesche, W. H. J. Org. Chem. 1964, 29, 1757−
̀
(35) (a) Bartnik, R.; Baylere, P.; Chrostowska, A.; Galindo, A.;
1762.
Lesniak, S.; Pfister-Guillouzo, G. Eur. J. Org. Chem. 2003, 2475−2479..
(b) Chrostowska, A.; Matrane, A.; Maki, D.; Khayar, S.; Ushiki, H.;
Graciaa, A.; Belachemi, L.; Guillemin, J.-C. ChemPhysChem 2012, 13,
226−236.. (c) Chrostowska, A.; Dargelos, A.; Khayar, S.; Wentrup, C.
(13) Paetzold, P. I.; Stohr, G.; Maisch, H.; Lenz, H. Chem. Ber. 1968,
101, 2881−2888.
(14) Paetzold, P.; Stanescu, C.; Stubenrauch, J. R.; Bienmuller, M.;
Englert, U. Z. Anorg. Allg. Chem. 2004, 630, 2632−2640.
G
dx.doi.org/10.1021/ja508813v | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX