1184
X.-F. Jiang et al.
LETTER
(c) Issacs, L.; Chin, D. N.; Bowden, N.; Xia, Y. N.;
Whiteside, G. M. In Supramolecular Materials and
Technologies; Reinhoudt, D. N., Ed.; Wiley: Chichester,
1999, Chap. 1, 1. (d) Steed, J. W.; Atwood, J. L.
Supramolecular Chemistry; Wiley: Chichester, 2000.
(e) Supramolecular Chemistry: From Molecules to
Nanomaterials; Gale, P. A.; Steed, J. W., Eds.; Wiley:
Chichester, 2012.
cavity built through a metal-directed self-assembly, in-
volving spontaneous deprotonation of the 1H-tetrapyrazo-
lyl ligands. Therefore, by using the CAChe 6.1.1 program,
we constructed a visual model of the molecular structure
to evaluate the size and shape of 13. Cage 13 has a molec-
ular dimension of 22.9 × 19.4 × 19.2 Å and an interior
void volume of 4331 Å3, as shown in Figure 4.
(2) Cram, D. J.; Cram, M. J. Container Molecules and Their
Guests; Royal Society of Chemistry: Cambridge, 1994.
(3) (a) Gutsche, C. D. Calixarenes; Royal Society of Chemistry:
Cambridge, 2008. (b) Calixarenes in the Nanoworld;
Vicens, J.; Harrowfield, J.; Baklouti, L., Eds.; Springer:
Dordrecht, 2007.
(4) (a) Thomas, H.; Rudkevich, D. M.; Rebek, J. Jr. Nature
1998, 394, 764. (b) Trembleau, L.; Rebek, J. Jr. Science
2003, 301, 1219. (c) Hof, F.; Craig, S. L.; Nuckolls, C.;
Rebek, J. Jr. Angew. Chem. Int. Ed. 2002, 41, 1488.
(5) (a) Elguero, J. In Comprehensive Heterocyclic Chemistry;
Vol. 5; Katritzky, A.; Rees, C. W., Eds.; Pergamon: Oxford,
1984, 277. (b) Elguero, J. In Comprehensive Heterocyclic
Chemistry II; Vol. 3; Katrizky, A.; Rees, C. W.; Scriven, E.
F. V., Eds.; Elsevier: Oxford, 1996, 3.
(6) (a) 1,3-Dipolar Cycloaddition Chemistry; Vol. 1; Padwa, A.,
Ed.; Wiley: New York, 1984. (b) Ramirez, F.; Bhatia, S. B.;
Patwardhan, A. V.; Smith, C. P. J. Org. Chem. 1967, 32,
3547.
Figure 4 The modeled structure of the organometallic supramolec-
ular cage 13·8PF6– produced by using the CaChe 6.1.1 program. The
model is constructed from the deprotonated cavitand 2 and the dimet-
al coordination corners, and is drawn as a ball-and-stick model. (A:
side view; B: top view; light gray and black: carbon; blue: nitrogen;
red: oxygen; white: hydrogen; yellow: palladium).
(7) (a) La Monica, G.; Ardizzoia, G. A. Prog. Inorg. Chem.
1997, 46, 151. (b) Trofimenko, S. Prog. Inorg. Chem. 1986,
34, 115. (c) Trofimenko, S. Chem. Rev. 1972, 72, 497.
(8) (a) Tong, J.; Yu, S.-Y.; Li, H. Chem. Commun. 2012, 48,
5343. (b) Yu, S.-Y.; Jiao, Q.; Li, S.-H.; Huang, H.-P.; Li, Y.-
Z.; Sei, Y.; Yamaguchi, K. Org. Lett. 2007, 9, 1379. (c) Yu,
S.-Y.; Huang, H.-P.; Li, S.-H.; Jiao, Q.; Li, Y.-Z.; Wu, B.;
Sei, Y.; Yamaguchi, K.; Pan, Y.-J.; Ma, H.-W. Inorg. Chem.
2005, 44, 9471. (d) Qin, L.; Yao, L.-Y.; Yu, S.-Y. Inorg.
Chem. 2011, 51, 2443. (e) Yao, L.-Y.; Yu, Z.-S.; Qin, L.; Li,
Y.-Z.; Qin, Y.; Yu, S.-Y. Dalton Trans. 2013, 3447.
(9) 5,11,17,23-Tetrakis(3,5-dimethyl-1H-pyrazol-4-yl)-
25,26,27,28-tetrapropoxycalix[4]arene (1)
In conclusion, we synthesized several novel cone-tetra-β-
diketone and tetrapyrazolyl calix[4]arenes compounds 8,
1, 12, and 2 from simple starting materials. All new com-
pounds were characterized by 1H and 13C NMR spectros-
copy, elemental analysis, and CSI–TOF and MALDI–
TOF mass spectrometry. Compound 1 self-assembled to
form a one-dimensional chain through multiple intermo-
lecular hydrogen bonds in the solid state. Compound 2
was used to construct a metallo-cage compound with a
proposed [Pd8L2]-type structure containing a deep cavity
with dimetal corners. These cage-shaped compounds and
complexes with deep cavities might serve as hosts for
small guest molecules and anions. The self-assembly and
related function of tetrapyrazolyl compounds as bridging
ligands in metal-directed self-assembly are currently un-
der investigation.
White powder; yield: 546 mg (85%); mp 285–289 °C; 1H
NMR (400 MHz, DMSO-d6, 20 °C): δ = 11.86 (s, 4 H, HN-
pyrazole), 6.64 (s, 8 H, H-Ar), 4.44 and 3.24 (d, Ј = 12.1 Hz,
8 H, Ar-CH2-Ar), 3.82 (t, Ј = 8.6 Hz, 8 H, ArOCH2CH2CH3),
2.03 and 1.62 (s, 24 H, pyrazole-CH3), 1.96 (ψ-sextet, 8 H,
ArOCH2CH2CH3), 0.98 (t, J = 8.4 Hz, 12 H,
ArOCH2CH2CH3); 13C NMR (100 MHz, DMSO-d6, 25 °C):
δ = 135.6, 134.3, 128.9, 118.41, 79.26, 56.59, 23.31, 18.63,
10.52; MS (MALDI–TOF, MeOH): m/z: calcd for [M + Na]+
991.56; found 991.6.
Acknowledgment
5,11,17,23-Tetrakis[4-(3,5-dimethyl-1H-pyrazol-4-
yl)phenyl]-25,26,27,28-tetrapropoxycalix[4]arene (2)
White power; yield: 55 mg (75%); mp 233–240 °C; 1H NMR
(400 MHz, DMSO-d6, 25 °C): δ = 12.19 (s, 4 H, HN-
pyrazole), 7.34 (s, J = 8.8 Hz, 8 H, phenyl-H), 7.01–7.08 (d,
J = 8.4 Hz, 8 H, phenyl-H), 6.98 (s, 8 H, calixarene-Ar-H),
4.51 and 3.43 (d, J = 7.8 Hz, 8 H, ArCH2Ar), 3.98 (d, J =
12.8 Hz, 8 H, ArOCH2CH2CH3), 2.17 (s, 24 H, pyrazole-
CH3), 1.97–2.01 (4-sextet, J = 8.0 Hz, 8 H, ArOCH2CH2CH3),
1.00 (t, J = 7.4 Hz, 12 H, ArOCH2CH2CH3). 13C NMR (100
MHz, CDCl3, 25 °C): δ = 157.32, 146.72, 135.55, 134.46,
133.56, 129.92, 127.26, 126.74, 31.33, 23.34, 10.38. MS
(MALDI–TOF, MeOH–DMSO): m/z: calcd for [M + H2O +
H+]: 1291.7; found: 1290.1. Anal Calcd for
This work was supported by National Natural Science Foundation
of China (No. 91127039). We thank the BSRF (Beijing Synchrotron
Radiation Facility) for performing the crystal-structure determinati-
on by synchrotron radiation X-ray diffraction analysis. We are also
grateful to Professor Dr. Yizhi Li of Nanjing University for the
X-ray crystallography.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
References
(1) (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and
Perspectives; VCH: Weinheim, 1995. (b) Comprehensive
Supramolecular Chemistry; Atwood, J. L.; Davies, J. E. D.;
Macnicol, D. D.; Vögtle, F., Eds.; Pergamon: Oxford, 1996.
C84H88N8O4·2H2O: C, 77.03; H, 7.08; N, 8.56. Found: C,
77.11, H, 7.06; N, 8.52.
Synlett 2014, 25, 1181–1185
© Georg Thieme Verlag Stuttgart · New York