Organic Letters
Letter
Scheme 5. Proposed Catalytic Cycle
REFERENCES
(1) Katsuki, T.; Martin, V. Org. React. 2004, 48, 1−299.
(2) (a) Behrens, C. H.; Sharpless, K. B. J. Org. Chem. 1985, 50, 5696−
5704. (b) Guivisdalsky, P.; Bittman, R. J. Am. Chem. Soc. 1989, 111,
3077−3079. (c) Chini, M.; Crotti, P.; Flippin, L. A.; Gardelli, C.;
Giovani, E.; Macchia, F.; Pineschi, M. J. Org. Chem. 1993, 58, 1221−
1227. (d) Hanson, R. M. Chem. Rev. 1991, 91, 437−475.
■
(3) (a) Wang, C.; Yamamoto, H. J. Am. Chem. Soc. 2014, 136, 6888−
6891. (b) Uesugi, S.; Watanabe, T.; Imaizumi, T.; Shibuya, M.; Kanoh,
N.; Iwabuchi, Y. Org. Lett. 2014, 16, 4408−4411. (c) Wang, C.;
Yamamoto, H. Org. Lett. 2014, 16, 5937−5939.
(4) (a) Lee, D.; Taylor, M. S. J. Am. Chem. Soc. 2011, 133, 3724−3727.
(b) Lee, D.; Williamson, C. L.; Chan, L.; Taylor, M. S. J. Am. Chem. Soc.
2012, 134, 8260−8267. (c) Dimitrijevic, E.; Taylor, M. S. Chem. Sci.
́
2013, 4, 3298−3303. (d) Taylor, M. S. Acc. Chem. Res. 2015, 48, 295−
305.
(5) (a) Sasaki, M.; Tanino, K.; Hirai, A.; Miyashita, M. Org. Lett. 2003,
5, 1789−1791. (b) Tomata, Y.; Sasaki, M.; Tanino, K.; Miyashita, M.
Tetrahedron Lett. 2003, 44, 8975−8977.
(6) For a review of methods for selective opening of 2,3-epoxy alcohols
with halides: Bonini, C.; Righi, G. Synthesis 1994, 16, 225−238.
precatalyst activation, serves to generate 2 equiv of i-Pr2NEt·HCl
relative to 1a. Reversible covalent interaction of the organoboron
catalyst with substrate activates the epoxide toward ring opening
by the released Cl−. The observed C3-selectivity is consistent
with results obtained for other Lewis acid promoted reactions of
epoxy alcohols, including those involving halide nucleophiles.3c,6
Acylation of the formed borinic ester, and displacement of the
product by epoxy alcohol, results in catalyst turnover and
regenerates an equivalent of chloride.
(7) (a) Kricheldorf, H. R.; Morber, G.; Regel, W. Synthesis 1981, 383−
̈
384. (b) Andrews, G. C.; Crawford, T. C.; Contillo, L. G., Jr. Tetrahedron
Lett. 1981, 22, 3803−3806. (c) Oriyama, T.; Ishiwata, A.; Hori, Y.;
Yatabe, T.; Hasumi, N.; Koga, G. Synlett 1995, 1004−1006.
(d) Stamatov, S. D.; Stawinski, J. Eur. J. Org. Chem. 2008, 2635−2643.
(8) (a) Blandy, C.; Choukroun, R.; Gervais, D. Tetrahedron Lett. 1983,
24, 4189−4192. (b) Sinou, D.; Emziane, M. Tetrahedron Lett. 1986, 27,
4423−4426. (c) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.;
Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5897−5898.
In conclusion, an efficient, atom-economical process for
regioselective chloroacylation and chlorosulfonylation of 2,3-
epoxy alcohols has been developed. In situ acylation or
sulfonylation of the chlorohydrin diol not only results in
differentiation of the two OH groups but also enables what might
otherwise be a challenging catalyst turnover step. The proposed
mechanism, involving sequential enhancements of the electro-
and nucleophilicity of the bound substrate, highlights the
versatile reactivity of borinic acid complexes. Efforts to gain
insight into the mechanism of this process, and to extend this
mode of catalysis to other sets of reaction partners, are underway
in our laboratory.
(9) (a) Mullis, J. C.; Weber, W. P. J. Org. Chem. 1982, 47, 2873−2875.
(b) Imi, K.; Yanagihara, N.; Utimoto, K. J. Org. Chem. 1987, 52, 1013−
1016. (c) Cole, B. M.; Shimizu, K. D.; Krueger, C. A.; Harrity, J. P. A.;
Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35,
1668−1671. (d) Schaus, S. E.; Jacobsen, E. N. Org. Lett. 2000, 2, 1001−
1004.
(10) (a) Shibata, I.; Baba, A.; Matsuda, H. Tetrahedron Lett. 1986, 27,
3021−3024. For other examples of epoxide chloroacylation: (b) Iqbal,
J.; Khan, M. A.; Srivastava, R. R. Tetrahedron Lett. 1988, 29, 4985−4986.
(c) Qian, C.; Zhu, D. Synth. Commun. 1994, 24, 2203−2214.
(d) Taniguchi, Y.; Tanaka, S.; Kitamura, T.; Fujiwara, Y. Tetrahedron
Lett. 1998, 39, 4559−4560. (e) Luzzio, F. A.; Bobb, R. A. Tetrahedron
1999, 55, 1851−1858. (f) Maghaddam, R. M.; Saeidian, H.; Mirjafaray,
Z.; Javan, M. J.; Farimani, M. M.; Seirafi, M. Heteroatom Chem. 2009, 20,
157−163. (g) Umeda, R.; Nishimura, T.; Kaiba, K.; Tanaka, T.;
Takahashi, Y.; Nishiyama, Y. Tetrahedron 2011, 67, 7217−7221.
(11) (a) Sergeyev, N. M.; Sergeyeva, N. D.; Raynes, W. T. J. Magn.
Reson., Ser. A 1995, 115, 174−192. (b) Braddock, D. C.; Bhuva, R.;
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization data, and NMR
spectral data for all new compounds. The Supporting
́
Millan, D. S.; Perez-Fuertes, Y.; Roberts, C. A.; Sheppard, R. N.; Solanki,
S.; Stokes, E. S. E.; White, A. J. P. Org. Lett. 2007, 9, 445−448.
(12) Synthetic applications of chlorohydrin diol monosulfonates:
(a) Ennis, M. D.; Baze, M. E. Tetrahedron Lett. 1986, 27, 6031−6034.
(b) Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc. 1988, 110,
2248−2256. (c) Gao, L.-X.; Murai, A. Tetrahedron Lett. 1992, 33, 4349−
4352. (d) Bedke, D. K.; Shibuya, G. M.; Pereira, A.; Gerwick, W. H.;
Haines, T. H.; Vanderwal, C. D. J. Am. Chem. Soc. 2009, 131, 7570−
7572.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Funding was provided by NSERC (Discovery Grant and Canada
Research Chairs Programs, Graduate Scholarship to K.T.,
Undergraduate Scholarship to K.J.), Boehringer Ingelheim
Ltd., and the Canada Foundation for Innovation (Projects
Nos. 17545 and 19119). We are grateful to Prof. Rob Batey
(Department of Chemistry, University of Toronto) for helpful
suggestions.
3485
Org. Lett. 2015, 17, 3482−3485