Fluorine Chemistry
CHIMIA 2014, 68, Nr. 6 441
derivatives ’, Part 1, Ed. S. Patai, John Wiley
cedure is similar to other rearrangements. (dd, J = 5.0 Hz, J= 17.2. Hz, 2 H, 1-CH2),
& Sons, Chichester, 1977, pp 569–618. b)
The thiocyanate was obtained as yellow
4.85 (dt, J = 7.5 Hz, J = 37.5 Hz, 1 H,
D. E. Gilges, ‘Kinetics and mechanism of
oil. Yield: 20 mg (0.06 mmol, 61%).
3-CH), 5.61 (bs, 1 H, NH). 13C NMR (101
reactions of cyanates and related compounds’,
in: ‘The chemistry of cyanates and their thio
derivatives’, Part 1, Ed. S. Patai, John Wiley &
Sons, Chichester, 1977, pp 381–444.
1H NMR (300 MHz, CDCl3): δ = 0.88 MHz, CDCl3): δ = 14.1 (C-10), 22.6 (C-9),
(t, J = 6.7 Hz, 3 H, 18-CH3), 1.26 (m, 26 23.5 (d, J = 4.1, C-4), 24.2 (C-14), 25.4
H, 5-CH2 – 17-CH ), 1.72–1.80 (m, 2 H, (C-13/15), 28.9, 30.7, 31.8 (C-6 – C-8),
4-CH2), 4.14 (dt, J 2= 6.7 Hz, J = 11.7 Hz, 48.9 (d, J = 28.9, C-1), 48.9 (C12/16),
1 H, 3-CH), 4.55 (dd, J = 3.8 Hz, J = 47.6 109.3 (d, J = 13.2 Hz, C-1), 154.6 (d, J
Hz, 1 H, 1-CHA), 4.71 (dd, J = 3.7 Hz, J = = 252.9 Hz, C-2), 181.1 (C-11). 19F NMR
16.5 Hz, 1 H, 1-CH ). 13C NMR (75 MHz, (282 MHz, CDCl3): δ = –117.9 (dt, J =
[9] a) C. Christophersen, A. Holm, Acta Chem.
Scand. 1970, 24, 1512; b) L. Overman, M.
Kakimoto, J. Org. Chem. 1978, 43, 4563; c) Y.
Ichikawa, K. Tsuboi, M. Isobe, J. Chem. Soc.,
Perkin Trans. 1 1994, 2791; d) K. Bahnert, S.
Groth, Angew. Chem. Int. Ed. Engl. 1992, 31,
866.
CDCl ): δ = 13.1 (CB-18), 21.7 (C-17), 24.5 17.2 Hz, JH,F = 37.2 Hz). HRMS (ESI):
3
(C-5),329.7, 29.8, 29.9, 30.0, 30.3, 32.3 (C- m/z calcd for [M + Na]+: 323.1928; found:
4 and C-6 – C-16), 56.9 (dd, J = 31.1 Hz, 323.1929.
[10] a) S. Braverman, M. Cherkinsky, M. L. Birsa,
‘Science of Synthesis’, Vol 18, Thieme,
Stuttgart, 2005, pp 135–137; b) Y. Ichikawa,
Synlett 2007, 2927.
C-3), 91.1 (dd, J = 17.8 Hz, C-1), 131.7
(C-19), 160.4 (dd, J = 260.9 Hz, C-2). 19F
Acknowledgements
[11] a) H. Ulrich, ‘Reactions of alkyl and aryl
Financial support by the Deutsche
NMR (282 MHz, CDCl3): δ = –108.9 (ddd,
isocyanates’, in: ‘The
Chemistry and
Forschungsgemeinschaft (DFG, Project Ha
2145/12-1) is gratefully acknowledged.
J = 11.6, J = 16.5, J = 47.6 Hz). HRMS
Technology of Isocyanates’, Wiley, 1996; b)
E. Delebecq. J. P. Pacault, B. Boutevin, F.
Ganachaud, Chem. Rev. 2013, 113, 80; c) J. H.
Saunders, R. J. Slocombe, Chem. Rev. 1948, 43,
(ESI): m/z calcd for [M + Na]+: 350.2288;
found: 350.2288.
Received: April 3, 2014
203.
4.3 General Procedure for the
[12] a) H. Ho, A. Sato, T. Kobayashi, T. Taguchi,
Synthesis of Fluorinated Thioureas
[1] a) R. G. Guy, ‘Synthesis and preparative
Chem. Commun. 1998, 2441. b) F. Tellier, M.
applications of thiocyanates’, in: ‘The chemistry
Audouin, M. Baudry, R. Sauvetre, Eur. J. Org.
The
corresponding isothiocyanate
of cyanates and their thio derivatives’, Part 2,
Ed. S. Patai, John Wiley & Sons, Chichester,
1977, pp 819–886; b) L. Drobnica, P. Christian,
J. Augustin, ‘Synthesis and preparative
Chem. 2000, 1933, and references cited therein.
(0.2 mmol) is microwave irradiated to
100 °C with the amine (0.1 mL) for 1 h.
Dichloromethane (5 mL) and 2 n HCl (5
mL) is added and the phases are separated.
[13] a) T. Taguchi, T. Morikawa, O. Kitagawa, T.
Mishima, Y. Kobayashi, Chem. Pharm. Bull.
1985, 33, 5137; b) J. M. Percy, M. E. Prime,
applications of isocyanates’, in: ‘The chemistry
J. Org. Chem. 1998, 63, 8049, and references
cited therein.
of cyanates and their thio derivatives’, Part 2,
The organic phase is washed with brine
Ed. S. Patai, John Wiley & Sons, Chichester,
1977, pp 1003–1221; c) S. Braverman, M.
Cherkinsky, M. L. Birsa, ‘Science of Synthesis’,
and dried over MgSO . The resulting resi-
due is purified by sili4ca gel chromatogra-
phy (cyclohexane/ethyl acetate, 10:1).
N-(2-Fluorohexadec-2-en-1-yl)-N'-
phenylthiourea (31):
[15] a) T. Allmendiger, C. Angst, H. Karfunkel, J.
Thieme, Stuttgart, 2005, pp 211–213.
[2] a) W. Walter, K. D. Bode, Angew. Chem. Int. Ed.
1967, 6, 281; Angew. Chem. 1967, 79, 285; b)
C. Richter, K. Klatt, A. Feuerer, K. Schulze, J.
Prakt. Chem. 1992, 334, 60; c) For an overview
see: Y.-Q. Wu, in: ‘Science of Synthesis’, Vol.
D. Michel, S. L. Croft, Synthesis 1996, 591; c)
1H NMR (300 MHz, CDCl3): δ = 0.87
(t, J = 6.7 Hz, 1 H, 16-CH ), 1.25–1.36
(m, 22 H, 5-CH2-15-CH2), 23.02–2.10 (m,
2 H, 4-CH ), 4.37 (dd, J = 5.5, J = 16.4 Hz,
1 H, 2-CH2), 4.84 (dt, J = 7.5, J = 37.3 Hz,
1 H, 3-CH2), 6.19 (bs, C-1-NH), 7.21–7.24
[16] a) F. Tranel, G. Haufe, J. Fluorine Chem.
2004, 125, 1593; b) F. Tranel, R. Fröhlich,
18, Ed. J. G. Knight, Thieme, Stuttgart, 2005,
G. Haufe, J. Fluorine Chem. 2005, 126, 557;
pp 188–310.
c) U. Wittmann, F. Tranel, R. Fröhlich, G.
Haufe, Synthesis 2005, 2085; d) M. Marhold,
U. Wittmann, S. Grimme, T. Takahashi, G.
Huafe, J. Fluorine Chem. 2007, 128, 1306; e) J.
Walkowiak, M. Tomas-Szwaczyk, G. Haufe, H.
Koroniak, J. Fluorine Chem. 2012, 143, 189; f)
D. C. Ramb, G. Haufe, Synlett 2013, 24, 2229.
289; b)A. G. Doyle, E. N. Jacobsen, Chem. Rev.
(m, 2 H, 19/23-CH), 7.30–7.34 (m, 1 H, [4] a) O. Billeter, Ber. Dtsch. Chem. Ges. 1885, 8,
462; b) G. Gerlich, Justus Liebigs Ann. Chem.
1885, 178, 337; c) O. Billeter, Helv. Chim. Acta
21-CH), 7.42–7.48 (m, 2 H, 20/22-CH),
8.00 (bs, 1 H, NH). 13C NMR (75 MHz,
[17] a) G. Alvernhe, A. Laurent, G. Haufe, Synthesis
CDCl3): δ = 14.1 (C-16), 22.7 (C-15), 23.5
1987, 562; b) G. Haufe, G. Alvernhe, E.
(d, J = 4.0, C-4), 29.0–34.7 (C-5 – C-14),
46.2C(d, J = 30.0, C-1), 109.6 (d, J = 13.8
Hz, C-1), 125.2 (C-19/23), 127.5 (C-15),
130.3 (C-20/22), 135.8 (C-118), 153.7 (d,
J = 252.8 Hz, C-2), 180.8 (C-17). 19F NMR
(282 MHz, CDCl3): δ = –118.1 (dt, J = 16.5
Hz, J = 37.4 Hz). HRMS (ESI): m/z calcd
for [M + Na]+: 415.2554; found: 415.1554.
N-(2-Fluorodec-2-en-1-yl)-N',N'-
pentamethylene-thiourea (32):
[5] a) O. Mumm, M. Richter, Chem. Ber. 1940, 73,
843; b) P. A. S. Smith, D. W. Emerson, J. Am.
Chem. Soc. 1960, 82, 3076; c) A. Fava, Angew.
Chem. 1965, 77, 271; d) E. H. M. Abd Elall,
M. I. Al Ashmawy, J. M. Mellor, J. Chem. Soc.,
Perkin Trans. 1 1987, 2729; e) K. Schulze. G.
Haufe, G. Köhler, Z. Chem. 1989, 29, 167; f) D.
Laurent, T. Ernet, O. Goj, S. Kröger, A. Sattler,
Org. Synth. 1999, 76, 159; c) T. Ernet, G. Haufe,
Synthesis 1997, 953.
[18] I. Ichikawa, Synlett 1991, 238.
[19] P. Kocˇovský, Tetrahedron Lett. 1986, 72, 5521.
[20] a) R. Loos, S. Kobayashi, H. Mayr, J. Am.
Chem. Soc. 2003, 125, 14126; b) H. Mayr, M.
Breugst, R. Ofial, Angew. Chem. 2011, 123,
6598; Angew. Chem. Int. Ed. 2011, 50, 6470; c)
A. Fava, A. Iliceto, S. Bresadola, J. Am. Chem.
Soc. 1965, 87, 4791.
[6] a) M. Kotani, Y. Shigetomi, M. Imada, M. Oki,
Heteroatom Chem. 1997, 8, 35; b) R. Koch, J. J.
Finnerty, S. Murali, C. Wentrup, J. Org. Chem.
2012, 77, 1749.
[7] K. Banert, M. Hagedorn, A. Müller, Eur. J. Org.
Chem. 2001, 1089.
[21] G. S. Nikolova, L. Zhang, X. Chen, L. Chi, G.
Haufe, Colloids Surf. A 2008, 317, 414.
[22] J. G. Smith, S. E. Drozda, S. P. Petraglia, N. R.
1H NMR (400 MHz, CDCl3): δ = 0.88
(t, J = 6.7 Hz, 3 H, 10-CH3), 1.27–1.37
(m, 10 H, 5-CH2 – 9-CH ), 1.61–1.68 (m,
6 H, 13/14/15-CH2), 2.025–2.11 (m, 2 H,
4-CH2), 3.79 (m, 4 H, 12/16-CH2), 4.41
Quinn, E. M. Rice, B. S. Taylor, M. Viswanthan,
[8] a) K. A. Jensen, A. Holm, ‘Syntheses and
preparative applications of cyanates’, in:
‘The chemistry of cyanates and their thio