UPDATES
The Oxidative Annulation of Tertiary Benzyl Alcohols with Internal Alkynes
1,1-Dimethyl-3,4-diphenyl-1H-isochromene (4aa):[9]:Color-
less solid. 1H NMR (CDCl3, 500 MHz): d=7.41–7.11 (m,
13H), 6.96–6.90 (m, 1H), 1.84 (s, 6H); 13C NMR (CDCl3,
125 MHz): d=148.2, 137.2, 136.4, 136.2, 132.1, 131.8, 128.9,
128.7, 127.9, 127.6, 127.4, 127.1, 127.0, 123.7, 122.3, 115.8,
77.8, 27.2; HR-MS (APCI): m/z=313.1597, calcd. for
C23H21O [M+H]+: 313.1587.
preference for the annulation across electron-rich
benzyl alcohol 2b over electron-deficient benzyl alco-
hol 2e and the same preference was also revealed in
the case of using electron-rich [Cp*RhCl2]2
(Scheme 9). The use of 1 revealed the slight prefer-
ence for the migratory insertion across dialkylacety-
lene 3n over diarylacetylene 3a (Scheme 10); on the
contrary, the use of [Cp*RhCl2]2 revealed the slight
preference for the migratory insertion across 3a over
3n (Scheme 10).
Acknowledgements
This work was supported partly by Grants-in-Aid for Scien-
tific Research from the Ministry of Education, Culture,
Sports, Science and Technology (MEXT, Japan) (Nos.
23105512, 25105714, and 251057733) and ACT-C from Japan
Science and Technology Agency (JST, Japan). We thank
Umicore for generous support in supplying the rhodium com-
plex.
Conclusions
In conclusion, it has been established that a dinuclear
(electron-deficient h5-cyclopentadienyl)rhodium
ACTHNUTRGNE(NUG III)
complex is a highly active precatalyst for the oxida-
tive annulation of tertiary benzyl alcohols with inter-
nal alkynes, leading to isochromenes, under ambient
conditions (at room temperature under air). The pres-
ent catalysis could be conducted using air and a cata-
References
lytic amount of CuACHTUNTRGNEUNG(OAc)2 as oxidants in acetone at
room temperature, therefore, this new protocol is op-
erationally more convenient than the previously re-
[1] For reviews of (h5-cyclopentadienyl)rhodium
ACTHUNTGRENNG(U III) com-
plexes, see: a) E. Peris, P. Lahuerta, in: Comprehensive
Organometallic Chemistry III, Vol. 7, (Eds.: H. C.
Robert, D. M. P. Mingos), Elsevier, Oxford, 2007,
p 139; b) P. M. Maitlis, J. Organomet. Chem. 1995, 500,
239.
ported protocol [employing excess CuACTHNURGTNEUNG(OAc)2 as an
oxidant in refluxing dioxane]. This study revealed
that our new CpERhX2 precatalyst (1) is more active
À
À
[2] For reviews of the rhodium-catalyzed C H bond func-
for the directed C H bond functionalization of elec-
tron-rich arenes, including not only anilides[7] but also
benzyl alcohols, than the conventional Cp*RhX2 pre-
catalyst. The preference for annulation across elec-
tron-rich substrates over electron-deficient substrates,
which is similar to the previously studied indole syn-
thesis,[7] was observed in the electron-deficient dicat-
tionalization, see: a) G. Song, F. Wang, X. Li, Chem.
Soc. Rev. 2012, 41, 3651; b) F. W. Patureau, J. Wencel-
Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31;
c) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman,
Acc. Chem. Res. 2012, 45, 814; d) T. Satoh, M. Miura,
Chem. Eur. J. 2010, 16, 11212; e) J. C. Lewis, R. G.
Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013.
[3] a) D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess,
K. Fagnou, J. Am. Chem. Soc. 2008, 130, 16474;
b) D. R. Stuart, P. Alsabeh, M. Kuhn, K. Fagnou, J.
Am. Chem. Soc. 2010, 132, 18326.
ionic rhodium
mene synthesis.
ACHTUNGTRENNUNG
(III)/CpE complex-catalyzed isochro-
À
[4] For examples of the transition metal-catalyzed C H
bond functionalization of anilides, see: a) J. Wencel-
Delord, C. Nimphius, H. Wang, F. Glorius, Angew.
Chem. 2012, 124, 13175; Angew. Chem. Int. Ed. 2012,
51, 13001; b) H. Wang, C. Grohmann, C. Nimphius, F.
Glorius, J. Am. Chem. Soc. 2012, 134, 19592; c) T.-S.
Jiang, G.-W. Wang, J. Org. Chem. 2012, 77, 9504; d) B.
Schmidt, N. Elizarov, Chem. Commun. 2012, 48, 4352;
e) B. Xiao, Y.-M. Li, Z.-J. Liu, H.-Y. Yang, Y. Fu,
Chem. Commun. 2012, 48, 4854; f) F. Zhou, X. Han, X.
Lu, Tetrahedron Lett. 2011, 52, 4681; g) M. P. Huestis,
L. Chan, D. R. Stuart, K. Fagnou, Angew. Chem. 2011,
123, 1374; Angew. Chem. Int. Ed. 2011, 50, 1338; h) Y.
Su, M. Zhao, G. Song, X. Li, Org. Lett. 2010, 12, 5462;
i) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110,
1147; j) R. J. Phipps, M. J. Gaunt, Science 2009, 323,
1593; k) Z. Shi, B. Li, X. Wan, J. Cheng, Z. Fang, B.
Cao, C. Qin, Y. Wang, Angew. Chem. 2007, 119, 5650;
Angew. Chem. Int. Ed. 2007, 46, 5554; l) S. Yang, B. Li,
X. Wan, Z. Shi, J. Am. Chem. Soc. 2007, 129, 6066;
m) X. Wan, Z. Ma, B. Li, K. Zhang, S. Cao, S. Zhang,
Experimental Section
Typical Procedure for RhodiumACTHNUTRGNEUNG(III)-Catalyzed
Oxidative Annulation of Tertiary Benzyl Alcohols
with Internal Alkynes under Ambient Conditions
(4aa, Scheme 4 and Scheme 5)
To a 13.5-mL screw-cap vial bottle was added AgSbF6
(6.9 mg,
0.020 mmol),
1
(4.3 mg,
0.0050 mmol),
Cu(OAc)2·H2O (8.0 mg, 0.040 mmol), 2-phenylpropan-2-ol
ACHTUNGTRENNUNG
(2a, 81.7 mg, 0.600 mmol), diphenylacetylene (3a, 35.6 mg,
0.200 mmol), and acetone (1.0 mL) under air in this order.
The vessel was sealed and the mixture stirred at room tem-
perature under air for 72 h. The resulting mixture was dilut-
ed with ether, filtered through a silica gel pad, and washed
with EtOAc. The solvent was concentrated under reduced
pressure and the residue was purified by a preparative TLC
(hexane/EtOAc/toluene/CH2Cl2 =40:1:5:5) to give 4aa;
yield: 57.8 mg (0.185 mmol, 93%).
Adv. Synth. Catal. 2014, 356, 1638 – 1644
ꢁ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1643