Please dCohneomtCadojmusmt margins
Page 4 of 4
COMMUNICATION
Journal Name
9
For a detailed discussion of the topic see: B. S. Kim, M. M.
provides complementary regioselectivity to that of Pd-
catalyzed methodologies. The ability of this method to be used
in place of stoichiometric Mitsunobu-type deoxygenation
processes should result in widespread appeal.
Hussain, P. O. Norrby, P. J. Walsh, ChDeOmI:.1S0c.1i.03290/1C45,C5C,071929431D-
1250 and references therein.
10 A. Jabbari, E. J. Sorensen, K. N. Houk, Org. Lett. 2006, 8,
3105-3107.
11 For a review see: (a) J. Tsuji, T. Mandai, Synthesis 1996, 1-24;
strong hydride donors such as DIBAL-H or SmI2 can afford
the opposite regioisomers, but these reagents would exhibit
minimal chemoselectivity in the presence of reducible
groups. For more recent examples of Pd-catalyzed formate
reduction see: (b) A. Chau, J.-F. Paquin, M. Lautens, J. Org.
Chem. 2005, 71, 1924-1933; (c) T. Konno, T. Takehanna, M.
Mishima, T. Ishihara, J. Org. Chem. 2006, 71, 3545-3550; in
very rare cases, select substrates can be converted to the
internal alkene, see: (d) H. Cheng, C. Sun, D. Hou, J. Org.
Chem. 2007, 72, 2674-2677;
Acknowledgments
We thank NSERC Canada (Discovery Grant, Research Tools and
Infrastructure Grant), the Canadian Foundation for Innovation,
the University of Alberta, and faculty within the Department of
Chemistry for generous donations of equipment and
chemicals. Chris Godwin is acknowledged for assistance with
substrate synthesis
12 For the phosphine-catalysed reduction of allylic bromides
with LiAlH(OtBu)3 to terminal olefins see: K. D. Reichl, N. L.
Dunn, N. J. Fastuca, A. T. Radosevich, J. Am. Chem. Soc. 2015,
137, 5292-5295.
Notes and references
1
For a review see: J. M. Herrmann, B. König, Eur. J. Org. Chem.
2013, 2013, 7017-7027.
13 For an unselective Ir-catalysed deoxygenation process
o
(alkenes are also reduced) employing hydrazine at 160 C,
2
For select recent examples of new deoxygenation methods
see: (a) L. L. Adduci, T. A Bender, J. A. Dabrowski, M. R.
Gagné, Nature Chem. 2015, 7, 576-581; (b) H. Dang, N. Cox,
G. Lalic, Angew. Chem. Int. Ed. 2014, 53, 752-756; (c) L. L.
Adduci, M. P. McLaughlin, T. A. Bender, J. J. Becker, M. R.
Gagne, Angew. Chem. Int. Ed. 2014, 53, 1646-1649; (d) M.
Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2013, 52,
12905-12909; (e) J. Cornella, E. Gómez-Bengoa, R. Martin, J.
Am. Chem. Soc. 2013, 135, 1997-2009.
see: J. L. Huang, X. J. Dai, C. J. Li, Eur. J. Org. Chem. 2013,
6496-6500.
14 For early examples of Ir- and Rh-catalysed allylic amination
see: (a) P. A. Evans, J. E. Robinson, J. D. Nelson, J. Am. Chem.
Soc. 1999, 121, 6761-6762; (b) R. Takeuchi, N. Ue, K. Tanabe,
K. Yamashita, N. Shiga, J. Am. Chem. Soc. 2001, 123, 9525-
9534. For Ir-catalysed allylation of hydrazines and
hydrazones see: c) R. Matunas, A. J. Lai, C. Lee, Tetrahedron
2005, 61, 6298-6308.
3
4
For reviews that discuss such problems in modern organic
chemistry see: (a) J. Mahatthananchai, A. M. Dumas, J. W.
Bode, Angew. Chem. Int. Ed. 2012, 51, 10954-10990; (b) N. A.
Afagh, A. K. Yudin, Angew. Chem. Int. Ed. 2010, 49, 262-310.
For a review see: (a) S. W. McCombie, W. B. Motherwell, M.
J. Tozer, The Barton-McCombie Reaction. In Org. React. Vol.
77, John Wiley & Sons, Inc.: 2012; for recent applications in
complex molecule synthesis see: (b) H. Sugimura, S. Sato, K.
Tokudome, T. Yamada, Org. Lett. 2014, 16, 3384-3387; (c) M.
Zhang, N. Liu, W. Tang, J. Am. Chem. Soc. 2013, 135, 12434-
12438; (d) B. S. Fowler, K. M. Laemmerhold, S. J. Miller, J.
Am. Chem. Soc. 2012, 134, 9755-9761; (e) M. Bian, Z. Wang,
X. Xiong, Y. Sun, C. Matera, K. C. Nicolaou, A. Li, J. Am. Chem.
Soc. 2012, 134, 8078-8081.
15 Notes: (a) the stable, crystalline reagents NBSH and IPNBSH
are commercially available, or readily synthesized on
decagram scale; (b) for additional optimization data see the
supporting information; (c) hydrolysis was performed by
removal of MeCN prior to addition of THF/TFE/H2O (2:1:1)
and AcOH, direct addition of TFE/H2O without THF resulted
in ~10% lower yields; (d) electron-rich aryl methyl
carbonates are prone to rearrangement to the linear isomer,
pyridine and quinoline substrates are aminated effectively
but undergo reduction with low yield and regioselectivity,
cyclic allylic methyl carbonates are not viable substrates, as
is generally observed in Ir- and Rh-catalysed allylic
functionization; (e) see supporting information for details on
optimization of internal allylic substrates; (f) these conditions
are effective for terminal allylic carbonates, however the
reactions proceeds with slightly diminished branched/linear
selectivity compared to the use of [Ir(COD)Cl]2; (g) no
glovebox is required for these reactions, see the supporting
information.
16 Aside from being useful chemical building blocks, methyl-
substituted olefins are found in numerous bioactive
molecules, such as cyclosporines, corallopyronins and
penibruguieramide A.
17 Free diazene generated from sulfonyl hydrazines can reduce
olefins, for examples see: (a) B. J. Marsh, D. R. Carbery, J.
Org. Chem. 2009, 74, 3186-3188; (b) M. H. Haukaas, G. A.
O'Doherty, Org. Lett. 2002, 4, 1771-1774.
5
6
For diazene mediated alcohol reduction with sulfonyl
hydrazine reagents see: (a) M. Movassaghi, O. K. Ahmad, J.
Org. Chem. 2007, 72, 1838-1841; (b) A. G. Myers, M.
Movassaghi, B. Zheng, J. Am. Chem. Soc. 1997, 119, 8572-
8573; (c) A. G. Myers, B. Zheng, J. Am. Chem. Soc. 1996, 118,
4492-4493; (d) A. G. Myers, B. Zheng, Tetrahedron Lett.
1996, 37, 4841-4844.
For selected applications of reductions employing sulfonyl
hydrazine reagents in complex molecule synthesis see: (a) D.
Yang, G. C. Micalizio, J. Am. Chem. Soc. 2012, 134, 15237-
15240; (b) M. Shan, E. U. Sharif, G. A. O'Doherty, Angew.
Chem. Int. Ed. 2010, 49, 9492-9495; (c) M. Movassaghi, G.
Piizzi, D. S. Siegel, G. Piersanti, Angew. Chem. Int. Ed. 2006,
45, 5859-5863; (d) M. G. Charest, C. D. Lerner, J. D. Brubaker,
D. R. Siegel, A. G. Myers, Science 2005, 308, 395-398.
M. Movassaghi, O. K. Ahmad, Angew. Chem. Int. Ed. 2008,
47, 8909-8912.
18 Secondary allylic acetates are less reactive substrates. Under
the standard Ir-catalysed conditions with the acetate version
of the substrate in Table 3, entry 1, 27% (>20:1 b/l) product
is observed, compared to >95% for the allylic methyl
carbonate substrate, (the isolated yield of olefin is lower due
to volitility of the product). Under the standard Rh-catalysed
conditions 34% (20:80 b/l) product is observed.
19 For the Rh-catalyzed allylation of sulfonamides see: P. A.
Evans, J. E. Robinson, K. K. Moffett, Org. Lett. 2001, 3, 3269-
3271.
7
8
For acid catalysed substitution reactions of activated
propargylic substrates with sulfonyl hydrazines to generate
allenes see: (a) Z. Liu, P. Q. Liao, X. Bi, Chem. Eur. J. 2014, 20,
17277-17281; (b) D. A. Mundal, K. E. Lutz, R. J. Thomson, J.
Am. Chem. Soc. 2012, 134, 5782-5785.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins