LETTER
A. L.; Okuno, H. J. Chem. Soc., Chem. Commun. 1989,
Synthesis of 5-Aryl-2-Oxazolidinones
2163
2014, equipped with a capillary column (RTX-5, 30
1479. (e) Paz, J.; Perez-Balado, C.; Iglesias, B.; Munoz, L.
Synlett 2009, 395. (f) Dinsmore, C. J.; Mercer, S. P. Org.
Lett. 2004, 6, 2885. (g) Patil, Y. P.; Tambade, P. J.; Jagtap,
S. R.; Bhanage, B. M. J. Mol. Catal. A: Chem. 2008, 289,
14. (h) Du, Y.; Wang, J. Q.; Chen, J. Y.; Cai, F.; Tian, J. S.;
Kong, D. L.; He, L. N. Tetrahedron Lett. 2006, 47, 1271.
(i) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Arai, M. Green
Chem. 2003, 5, 340. (j) Bhanage, B. M.; Fujita, S.;
Ikushima, Y.; Arai, M. Green Chem. 2004, 6, 78. (k)Fujita,
S.; Kanamaru, H.; Senboku, H.; Arai, M. Int. J. Mol. Sci.
2006, 7, 438.
m × 0.25 mm × 0.25 mm) using a flame-ionization detector.
The residue was purified by column chromatography on
silica gel (eluting with 8:1 to 1:1 PE–EtOAc) to furnish the
product. The products were further identified by 1H NMR,
13C NMR, and MS which are consistent with those reported
in the literature3a–j and in good agreement with the assigned
structures.
(12) Spectral characteristics for representative examples of the
products were provided.
3-Ethyl-5-phenyl-2-oxazolidinone (2a)
Colorless liquid. 1H NMR (300 MHz, CDCl3): d = 1.17 (t, 3
H, J = 7.2 Hz), 3.29–3.45 (m, 3 H), 3.92 (t, 1 H, J = 8.7 Hz),
5.48 (t, 1 H, J = 7.8 Hz), 7.34–7.42 (m, 5 H). 13C NMR (75
MHz, CDCl3): d = 12.4, 38.8, 51.5, 74.2, 125.4, 128.6,
128.8, 138.8, 157.5. ESI-MS: m/z calcd for C11H13NO2:
191.09; found: 192.29 [M + H]+, 214.38 [M + Na]+, 405.01
[2 M + Na]+.
(7) Yoo, W. J.; Li, C. J. Adv. Synth. Catal. 2008, 350, 1503.
(8) (a) Ihata, O.; Kayaki, Y.; Ikariya, T. Angew. Chem. Int. Ed.
2004, 43, 717. (b) Ihata, O.; Kayaki, Y. Macromolecules
2005, 38, 6429. (c) Soga, K.; Chiang, W. Y.; Ikeda, S.
J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 121.
(d) Lundberg, R. D.; Albans, S.; Montgomery, D. R.
US 3523924, 1970; Chem. Abstr. 1970, 73, 111037.
(9) (a) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1999,
99, 475. (b) Green Chemistry Using Liquid and
3-Ethyl-4-phenyl-2-oxazolidinone (3a)
Colorless liquid. 1H NMR (300 MHz, CDCl3): d = 1.05 (t, 3
H, J = 5.4 Hz), 2.79–2.88 (m, 1 H), 3.48–3.57 (m, 1 H), 4.10
(t, 1 H, J = 6.0 Hz), 4.62 (t, 1 H, J = 6.6 Hz), 4.81 (t, 1 H,
J = 5.4 Hz),7.30–7.44 (m, 5 H). 13C NMR (75 MHz, CDCl3):
d = 12.1, 36.9, 59.4, 69.8, 127.0, 129.0, 129.2, 137.9, 158.1.
ESI-MS: m/z calcd for C11H13NO2: 191.09; found: 192.29
[M + H]+, 214.38 [M + Na]+.
Supercritical Carbon Dioxide; DeSimone, J. M.; Tumas,
W., Eds.; Oxford University: New York, 2003.
(c) Chemical Synthesis Using Supercritical Fluids; Jessop,
P. G.; Leitner, W., Eds.; Wiley-VCH: Weinheim, 1999.
(d) Leitner, W. Acc. Chem. Res. 2002, 35, 746.
(e) Beckman, E. J. J. Supercrit. Fluids 2004, 28, 121.
(f) Prajapati, D.; Gohain, M. Tetrahedron 2004, 60, 815.
(10) Lu, X. B.; Xiu, J. H.; He, R.; Jin, K.; Luo, L. M.; Feng, X.
J. Appl. Catal. A 2004, 275, 73.
(11) Typical Procedure for the Carboxylation of Aziridine
with CO2
(13) Kong, D. L.; He, L. N.; Wang, J. Q. Catal. Commun. 2010,
11, 992.
(14) CO2 activation by tertiary amines: (a) Pérez, E. R.; Franco,
D. W. Tetrahedron Lett. 2002, 43, 4091. (b) Endo, T.;
Nagai, D. Macromolecules 2004, 37, 2007. (c) Phan, L.;
Andreatta, J. R.; Horvey, L. K.; Edie, C. F.; Luco, A. L.;
Mirchandani, A.; Darensbourg, D. J.; Jessop, P. G. J. Org.
Chem. 2008, 73, 127. (d) Pereira, F. S.; deAzevedo, E. R.
Tetrahedron 2008, 64, 10097. (e) North, M.; Pasquale, R.
Angew. Chem. Int. Ed. 2009, 48, 2946. (f) Wykes, A.;
MacNeil, S. L. Synlett 2007, 107. (g) Masahiro, Y. F.;
MacFarlane, D. R. Electrochem. Commun. 2006, 8, 445.
(h) Masahiro, Y. F.; Johansson, K. Tetrahedron Lett. 2006,
47, 2755. (i) Ying, A. G.; Chen, X. Z.; Ye, W. D.
Tetrahedron Lett. 2009, 50, 1653.
In a typical reaction, the carboxylation of aziridine with CO2
was carried out in a 25 mL stainless steel autoclave.
Aziridine (1 mmol) was charged into the reactor at r.t. CO2
was introduced into the autoclave, and then the mixture was
stirred at predetermined temperature for 20 min to reach the
equilibration. The pressure was then adjusted to the desired
pressure, and the mixture was stirred continuously. When
the reaction finished, the reactor was cooled in ice-water and
CO2 was ejected slowly. An aliquot of sample was taken
from the resultant mixture and dissolved in dry CH2Cl2 for
GC analysis. GC analyses were performed on Shimadzu GC-
(15) Formation of Et2NH with CO2 identified by 1H NMR: Kong,
D. L.; He, L. N.; Wang, J. Q. Synlett 2010, 1276.
Synlett 2010, No. 14, 2159–2163 © Thieme Stuttgart · New York