2314
G.-Q. Chen et al.
CLUSTER
(m, 1 H, CH2), 1.965–1.973 (m, 1 H, CH2), 2.36–2.37 (m, 1 H,
CH2), 2.63–2.71 (m, 4 H, CH2), 2.76–2.81 (m, 1 H, CH2), 3.10–3.14
(m, 1 H, CH2), 6.36 (d, J = 1.5 Hz, 1 H, Ar), 7.18–7.21 (m, 1 H, Ar),
7.26–7.28 (m, 4 H, Ar). 13C NMR (100 MHz, CDCl3, TMS): δ =
21.3, 23.9, 29.0, 29.6, 36.3, 40.8, 56.9, 122.4, 126.5, 127.1, 128.6,
138.2, 155.7, 173.2, 181.6, 197.8. IR (CH2Cl2): ν = 2950, 1720,
1604, 1435, 1275, 1107, 858, 765, 750, 698 cm–1. MS (%): m/e (%)
= 250 (48.56) [M+], 222 (12.62), 208 (100.00), 193 (17.25), 179
(34.08), 165 (42.13), 152 (13.64), 128 (13.34), 115 (26.15), 89
(11.25). HRMS (EI): m/z calcd for C18H18O: 250.1358; found:
250.1357.
(7) Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc.
2007, 129, 12596.
(8) (a) Jones, R. V. H.; Lindsell, W. E.; Palmer, D. D.; Prestonb,
P. N.; Whitton, A. J. Tetrahedron Lett. 2005, 46, 8695.
(b) Lindsell, W. E.; Palmer, D. D.; Preston, P. N.; Rosair,
G. M. Organometallics 2005, 24, 1119.
(9) Morimoto, T.; Fujioka, M.; Fuji, K.; Tsutsumi, K.; Kakiuchi,
K. Pure Appl. Chem. 2008, 80, 1079.
(10) (a) Fukuyama, T.; Nakashima, N.; Okada, T.; Ryu, I. J. Am.
Chem. Soc. 2013, 135, 1006. (b) Lin, M.; Li, F.; Jiao, L.; Yu,
Z.-X. J. Am. Chem. Soc. 2011, 133, 1690. (c) Kondo, T.;
Nomura, M.; Ura, Y.; Wada, K.; Mitsudo, T. J. Am. Chem.
Soc. 2006, 128, 14816. (d) Wender, P. A.; Croatt, M. P.;
Deschamps, N. M. J. Am. Chem. Soc. 2004, 126, 5948.
(e) Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. 2008,
130, 4421. (f) Wender, P. A.; Croatt, M. P.; Deschamps, N.
M. J. Am. Chem. Soc. 2004, 126, 5948. (g) Khand, I. U.;
Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc.,
Perkin Trans. 1 1973, 1, 977.
(11) (a) Kim, S. Y.; Lee, S. I.; Choi, S. Y.; Chung, Y. K. Angew.
Chem. Int. Ed. 2008, 47, 4914. (b) Kim, S. Y.; Chung, Y. K.
J. Org. Chem. 2010, 75, 1281.
(12) Bennacer, B.; Fujiwara, M.; Lee, S.-Y.; Ojima, I. J. Am.
Chem. Soc. 2005, 127, 17756.
Compound 2b
A white solid; mp 123–125 °C. 1H NMR (400 MHz, CDCl3, TMS):
δ = 1.15–1.19 (m, 1 H, CH2), 1.26–1.34 (m, 2 H, CH2), 1.55–1.56
(m, 1 H, CH2), 1.69–1.75 (m, 1 H, CH2), 1.93–1.98 (m, 1 H, CH2),
2.29 (s, 3 H, CH3), 2.33–2.40 (m, 1 H, CH2), 2.59–2.75 (m, 4 H, 2
CH2), 2.77 (d, J = 13.6 Hz, 1 H, CH2), 3.09 (dd, J1 = 13.6 Hz, J2 =
2.0 Hz, 1 H, CH2), 6.35 (d, J = 1.6 Hz, 1 H, =CH), 7.09 (d, J = 8.0
Hz, 2 H, Ar), 7.17 (d, J = 8.0 Hz, 2 H, Ar). 13C NMR (100 MHz,
CDCl3, TMS): δ = 21.0, 21.3, 23.9, 28.9, 29.6, 36.2, 40.9, 56.6,
122.3, 126.9, 129.3, 135.1, 136.1, 155.9, 173.4, 181.5, 197.9. IR
(CH2Cl2): ν = 2930, 2856, 1674, 1541, 1386, 1327, 1054, 846, 730
cm–1. MS: m/e (%) = 264 (58.45) [M+], 236 (17.47), 222 (100.00),
207 (33.57), 193 (21.75), 179 (33.86), 165 (21.79), 128 (11.00), 115
(20.07), 89 (18.94). HRMS (EI): m/z calcd for C19H20O: 264.1514;
found: 264.1513.
(13) (a) Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Zhang,
L. J. Am. Chem. Soc. 2002, 124, 2876. (b) Wang, Y.; Wang,
J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.;
Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129,
10060.
Acknowledgment
(14) For transition-metal-catalyzed cyclizations of 1,4-enynes,
see: (a) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc.
2005, 127, 5802. (b) Buzas, A.; Gagosz, F. J. Am. Chem.
Soc. 2006, 128, 12614. (c) Marion, N.; Diez-Gonzalez, S.;
De Fremont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem.
Int. Ed. 2006, 45, 3647. (d) Shu, X.; Schienebeck, C. M.;
Song, W.; Guzei, I. A.; Tang, W. Angew. Chem. Int. Ed.
2013, 52, 13601. (e) Schienebeck, C. M.; Robichaux, P. J.;
Li, X.; Chen, L.; Tang, W. Chem. Commun. 2013, 49, 2616.
(f) Xu, X.; Liu, P.; Shu, X.; Tang, W.; Houk, K. N. J. Am.
Chem. Soc. 2013, 135, 9271. (g) Shu, X.; Li, X.; Shu, D.;
Huang, S.; Schienebeck, C. M.; Zhou, X.; Robichaux, P. J.;
Tang, W. J. Am. Chem. Soc. 2012, 134, 5211. (h) Shu, X.;
Huang, S.; Shu, D.; Guzei, I. A.; Tang, W. Angew. Chem.
Int. Ed. 2011, 50, 8153.
(15) For carbonylative cycloisomerisation of 1,4-enynes, see:
(a) Fukuyama, T.; Ohta, Y.; Brancour, C.; Miyagawa, K.;
Ryu, I.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M.
Chem. Eur. J. 2012, 18, 7243. (b) Li, X.; Song, W.; Tang, W.
J. Am. Chem. Soc. 2013, 135, 16797. (c) Li, X.; Huang, S.;
Schienebeck, C. M.; Shu, D.; Tang, W. Org. Lett. 2012, 14,
1584.
We thank the Shanghai Municipal Committee of Science and Tech-
nology (11JC1402600), the National Basic Research Program of
China (973)-2010CB833302, and the National Natural Science
Foundation of China (20472096, 21372241, 21361140350,
20672127, 21102166, 21121062, 21302203 and 20732008).
Supporting Information for this article is available online
at
10.1055/s-00000083.SunpfgIpi
o
o
nr
i
References and Notes
(1) (a) Beller, M. Catalytic Carbonylation Reactions, In Topics
in Organometallic Chemistry; Vol. 18; Springer: Berlin,
2006. (b) Hegedus, L. S. Transition Metals in the Synthesis
of Complex Organic Molecules; University Science Books:
Mill Valley, 1994. (c) Kollar, L. Modern Carbonylation
Methods; Wiley-VCH: Weinheim, 2008. (d) Kiss, G. Chem.
Rev. 2001, 101, 3435.
(2) Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew.
Chem. Int. Ed. 2001, 41, 2781.
(3) (a) Lee, J. T.; Thomas, P. J.; Alper, H. J. Org. Chem. 2001,
66, 5424. (b) Schmidt, J. A. R.; Lobkovsky, E. B.; Coates,
G. W. J. Am. Chem. Soc. 2005, 127, 11426.
(4) Jia, L.; Xu, H. Org. Lett. 2003, 5, 1575.
(5) Kurahashi, T.; de Meijere, A. Angew. Chem. Int. Ed. 2005,
44, 7881.
(6) (a) Jiang, G.-J.; Fu, X.-F.; Li, Q.; Yu, Z.-X. Org. Lett. 2012,
14, 692. (b) Yao, Z.-K.; Li, J.; Yu, Z.-X. Org. Lett. 2011, 13,
134. (c) Wender, P. A.; Gamber, G. G.; Hubbard, R. D.;
Pham, S. M.; Zhang, L. J. Am. Chem. Soc. 2005, 127, 2836.
(d) Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Zhang,
L. J. Am. Chem. Soc. 2002, 123, 2876.
(16) Chen, G.-Q.; Shi, M. Chem. Commun. 2013, 49, 698.
(17) Vasu, D.; Das, A.; Liu, R.-S. Chem. Commun. 2010, 46,
4115.
(18) (a) Shambayati, S.; Crowe, W. E.; Schreiber, S. L.
Tetrahedron Lett. 1990, 31, 5289. (b) Jeong, N.; Chung, Y.
K.; Lee, B. Y.; Lee, S. H.; Yoo, S.-E. Synlett 1991, 204.
(19) It has been reported that electron-deficient CO or phosphine
ligands were critical to increase the π-acidity of the rhodium
center, see: (a) Huang, S.; Li, X.; Lin, C. L.; Guzeic, I. A.;
Tang, W. Chem. Commun. 2012, 48, 2204. (b) Shu, X.-Z.;
Shu, D.; Schienebeck, C. M.; Tang, W. Chem. Soc. Rev.
2012, 41, 7698. Phosphine ligands have great influence on
Synlett 2014, 25, 2311–2315
© Georg Thieme Verlag Stuttgart · New York