10.1002/anie.201800746
Angewandte Chemie International Edition
COMMUNICATION
Yoshida, K. Takaki, Synlett 2012, 23, 1725; f) A. V. Dubrovskiy, N. A.
Markina, R. C. Larock, Org. Biomol. Chem. 2013, 11, 191.
For reviews on the application of benzyne chemistry in natural
product synthesis, see: a) C. M. Gampe, E. M. Carreira, Angew.
Chem. 2012, 124, 3829; Angew. Chem. Int. Ed. 2012, 51, 3766; b) P.
M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550; For a recent
example, see: c) M. A. Corsello, J. Kim, N. K. Garg, Nat. Chem. 2017,
9, 944.
Removal of N-Boc groups from 27 followed by a base
promoted lactamization afforded pentacycle 28 in 91% yield.
Selective C2-bromination of 28 was again a difficult task. After
many unsuccessful trials, we were able to realize this
[9]
transformation in
a quantitative yield by performing the
reaction in DMF at 0 °C using tetrabutylammonium tribromide
as a mild brominating reagent. Finally, oxidation of amine to
imine (NMO, TPAP) afforded (+)-hinckdentine A (1) in 81%
yield {[a]D + 269 (c 1.0, CHCl3), lit:[5] [a]D + 274 (c 2.0, CHCl3)}.
The physical and spectroscopic data of our synthetic
compound were identical to those reported for the natural
product.
[10] T. Buyck, Q. Wang, J. Zhu, Angew. Chem. 2013, 125, 12946; Angew.
Chem. Int. Ed. 2013, 52, 12714.
[11] a) K. Okuma, N. Matsunaga, N. Nagahora, K. Shioji, Y. Yokomori,
Chem. Commun. 2011, 47, 5822; For earlier work using amino esters
as coupling partners, see: b) D. C. Rogness, R. C. Larock,
Tetrahedron Lett. 2009, 50, 4003; c) R. D. Giacometti, Y. K.
Ramtohul, Synlett 2009, 2010; Using a-aminoketones: d) A. Bunescu,
C. Piemontesi, Q. Wang, J. Zhu, Chem. Commun. 2013, 49, 10284.
[12] For other selected annulation reactions initiated by nucleophilic
addition of amines/anilines to benzynes, see: a) J. Zhao, R. C.
Larock, J. Org. Chem. 2007, 72, 583; b) C. D. Gilmore, K. M. Allan, B.
M. Stoltz, J. Am. Chem. Soc. 2008, 130, 1558; c) D. C. Rogness, R.
C. Larock, J. Org. Chem. 2010, 75, 2289; d) D. C. Rogness, R. C.
Larock, J. Org. Chem. 2011, 76, 4980; e) S. D. Vaidya, N. P. Argade,
Org. Lett. 2013, 15, 4006.
In summary, we have developed a new heteroannulation
reaction of a-amino imides with arynes for the synthesis of
a,a-disubstituted indolin-3-ones. An enantioselective total
synthesis of (+)-hinckdentine A (1) featuring this reaction as a
key step was subsequently developed demonstrating the high
synthetic potential of this methodology.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
[13] See Supporting Information for the details of the synthesis.
[14] For a related transformation, see: X. Huang, T. Zhang, J. Org. Chem.
2010, 75, 506.
[15] Aryne insertion to amides, see: a) D. G. Pintori, M. F. Greaney, Org.
Lett. 2010, 12, 168; b) Aryne insertion to imides, see: A. C. Wright, C.
K. Haley, G. Lapointe, B. M. Stoltz, Org. Lett. 2016, 18, 2793.
[16] Selected examples, see: a) P. S. Steyn, Tetrahedron Lett. 1971, 12,
3331; b) D. D. O’Rell, F. G. H. Lee, V. Boekelheide, J. Am. Chem.
Soc. 1972, 94, 3205; c) J.-F. Liu, Z.-Y. Jiang, R.-R. Wang, Y.-T.
Zheng, J.-J. Chen, X.-M. Zhang, Y.-B. Ma, Org. Lett. 2007, 9, 4127;
d) D.-B. Zhang, D.-G. Yu, M. Sun, X.-X. Zhu, X.-J. Yao, S.-Y. Zhou,
J.-J. Chen, K. Gao, J. Nat. Prod. 2015, 78, 1253; e) G.-G. Cheng, D.
Li, B. Hou, X.-N. Li, L. Liu, Y.-Y. Chen, P.-K. Lunga, A. Khan, Y.-P.
Liu, Z.-L. Zuo, X.-D. Luo, J. Nat. Prod. 2016, 79, 2158; f) Y.-W.
Chang, C.-M. Yuan, J. Zhang, S. Liu, P. Cao, H.-M. Hua, Y.-T. Di, X.-
J. Hao, Tetrahedron Lett. 2016, 57, 4952.
Acknowledgements
We thank EPFL and the Swiss National Science Foundation
(SNSF) for financial support. Dr. R. O. Torres-Ochoa
acknowledges CONACyT (México) for a fellowship (CVU
256937). We are grateful to Dr. Farzaneh Fadaei Tirani and Dr.
Rosario Scopelliti for X-ray crystallographic analysis.
Keywords: Benzyne • heteroannulation • hinckdentine A •
natural product • oxindole
[17] For a recent review, see: Y. Yu, G. Li, L. Zu, Synlett 2016, 27, 1303.
[18] For selected recent examples, see: a) K. Pal, A. L. Koner, Chem. Eur.
J. 2017, 23, 8610; b) H. Chen, H. Shang, Y. Liu, R. Guo, W. Lin, Adv.
Funct. Mater. 2016, 26, 8128; c) J. H. Lee, J.-H. So, J. H. Jeon, E. B.
Choi, Y.-R. Lee, Y.-T. Chang, C.-H. Kim, M. A. Bae, J. H. Ahn, Chem.
Commun. 2011, 47, 7500.
[1]
[2]
A. J. Blackman, T. W. Hambley, K. Picker, W. C. Taylor, N.
Thirasasana, Tetrahedron Lett. 1987, 28, 5561.
a) A. D. Billimoria, M. P. Cava, J. Org. Chem. 1994, 59, 6777; b) L.
Domon, C. Le Coeur, A. Grelard, V. Thiéry, T. Besson, Tetrahedron
Lett. 2001, 42, 6671; c) J. Mendiola, I. Castellote, J. Alvarez-Builla, J.
Fernández-Gadea, A. Gómez, J. J. Vaquero, J. Org. Chem. 2006, 71,
1254; d) L. Li, M. Han, M. Xiao, Z. Xie, Synlett 2011, 1727; e) P.
Sang, Y. Xie, J. Zhou, Y. Zhang, Org. Lett. 2012, 14, 3894; f) M. Xu,
K. Xu, S. Wang, Z.-J. Yao, Tetrahedron Lett. 2013, 54, 4675.
Y. Liu, W. W. McWhorter, Jr., J. Am. Chem. Soc. 2003, 125, 4240.
K. Higuchi, Y. Sato, M. Tsuchimochi, K. Sugiura, M. Hatori, T.
Kawasaki, Org. Lett. 2009, 11, 197.
[19] A. D. Borthwick, Chem. Rev. 2012, 112, 3641.
[20] The reaction catalyzed by the quinine-derived catalyst,
a
pseudoenantiomer of 20, afforded (R)-21 with higher e.r. (93.5:6.5).
[21] CCDC1812863 (S)-17a contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre.
[3]
[4]
[22] Insoluble materials were formed in this heteroannulation reaction.
Similar phenomenon was observed with the trifluoroacetyl imide
derivative of (S)-17a.
[5]
[6]
K. Douki, H. Ono, T. Taniguchi, J. Shimokawa, M. Kitamura, T.
Fukuyama, J. Am. Chem. Soc. 2016, 138, 14578.
[23] R. Brettle, S. M. Shibib, J. Chem. Soc. Perkin Trans. 1 1981, 2912.
a) Z. Xu, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2013, 135, 19127; b)
O. Wagnières, Z. Xu, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2014, 136,
15102; c) Z. Xu, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2015, 137,
6712; d) Z. Xu, X. Bao, Q. Wang, J. Zhu, Angew. Chem. 2015, 127,
15150; Angew. Chem. Int. Ed. 2015, 54, 14937; e) W. Ren, Q. Wang,
J. Zhu, Angew. Chem. 2016, 128, 3561; Angew. Chem. Int. Ed. 2016,
55, 3500; f) C. Piemontesi, Q. Wang, J. Zhu, Angew. Chem. 2016,
128, 6666; Angew. Chem. Int. Ed. 2016, 55, 6556.
[7]
[8]
Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 12, 1211.
For reviews, see: a) H. H. Wenk, M. Winkler, W. Sander, Angew.
Chem. 2003, 115, 518; Angew. Chem. Int. Ed. 2003, 42, 502; b) D.
Peña, D. Pérez, E. Guitián, Angew. Chem. 2006, 118, 3659; Angew.
Chem. Int. Ed. 2006, 45, 3579; c) S. M. Bronner, A. E. Goetz, N. K.
Garg, Synlett, 2011, 2599; d) S. S. Bhojgude, A. T. Biju, Angew.
Chem. 2012, 124, 1550; Angew. Chem. Int. Ed. 2012, 51, 1520; e) H.
This article is protected by copyright. All rights reserved.