Journal of the American Chemical Society
Communication
(8) (a) Falmagne, J.-B.; Escudero, J.; Taleb-Sahraoui, S.; Ghosez, L.
Angew. Chem., Int. Ed. Engl. 1981, 20, 879. (b) Charette, A. B.; Grenon,
M. Can. J. Chem. 2001, 79, 1694.
conditions, respectively. The reaction could also be performed in
a diastereoselective fashion using a chiral auxiliary, leading to the
formation of the product with excellent diastereocontrol. Our
reaction could be applied to the formal synthesis of a potent
histone deacetylase inhibitor. Preliminary mechanistic observa-
tions led us to propose a polar-radical crossover, which is
unprecedented in the field of amide activation.
(9) (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592.
(b) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007,
129, 10096. (c) Medley, J. W.; Movassaghi, M. J. Org. Chem. 2009, 74,
1341. (d) Mewald, M.; Medley, J. W.; Movassaghi, M. Angew. Chem., Int.
Ed. 2014, 53, 11634. (e) White, K. L.; Mewald, M.; Movassaghi, M. J.
Org. Chem. 2015, 80, 7403. (f) White, K. L.; Movassaghi, M. J. Am. Chem.
Soc. 2016, 138, 11383. (g) Barbe, G.; Charette, A. B. J. Am. Chem. Soc.
2008, 130, 18. (h) Pelletier, G.; Bechara, W. S.; Charette, A. B. J. Am.
Chem. Soc. 2010, 132, 12817. (i) Bechara, W. S.; Pelletier, G.; Charette,
A. B. Nat. Chem. 2012, 4, 228. (j) Xiao, K.-J.; Wang, A.-E.; Huang, P.-Q.
Angew. Chem., Int. Ed. 2012, 51, 8314. (k) Peng, B.; Geerdink, D.;
Maulide, N. J. Am. Chem. Soc. 2013, 135, 14968. (l) Huang, P.-Q.;
Huang, Y.-H.; Xiao, K.-J.; Wang, Y.; Xia, Y.-E. J. Org. Chem. 2015, 80,
2861. (m) Lumbroso, A.; Behra, J.; Kolleth, A.; Dakas, P.-Y.; Karadeniz,
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and spectroscopic data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
U.; Catak, S.; Sulzer-Mosse,
2015, 56, 6541. (n) Kolleth, A.; Lumbroso, A.; Tanriver, G.; Catak, S.;
Sulzer-Mosse, S.; De Mesmaeker, A. Tetrahedron Lett. 2016, 57, 2697.
́
S.; De Mesmaeker, A. Tetrahedron Lett.
́
(o) Huang, P.-Q.; Huang, Y.-H.; Xiao, K.-J. J. Org. Chem. 2016, 81, 9020.
ORCID
(p) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421. (q) Tona, V.;
de la Torre, A.; Padmanaban, M.; Ruider, S.; Gonzal
Am. Chem. Soc. 2016, 138, 8348.
́
ez, L.; Maulide, N. J.
Author Contributions
†A.d.l.T. and D.K. contributed equally.
(10) (a) Patil, D. V.; Kim, S. W.; Nguyen, Q. H.; Kim, H.; Wang, S.;
Hoang, T.; Shin, S. Angew. Chem., Int. Ed. 2017, 56, 3670. (b) Kaiser, D.;
de la Torre, A.; Shaaban, S.; Maulide, N. Angew. Chem., Int. Ed. 2017,
Notes
The authors declare no competing financial interest.
́
R. W.; Gonzalez, L.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55, 15424.
ACKNOWLEDGMENTS
■
(11) Da Costa, R.; Gillard, M.; Falmagne, J. B.; Ghosez, L. J. Am. Chem.
Soc. 1979, 101, 4381.
We thank the University of Vienna for continued support of our
research program. Support of this research by the ERC (StG
FLATOUT and CoG VINCAT) and the DFG (Grants MA-
4861/4-1 and 4-2) is acknowledged. D.K. is the recipient of a
DOC Fellowship of the Austrian Academy of Sciences.
(12) This reaction could be accelerated by using 1 equiv of 2-
fluoropyridine. However, in most cases similar results were obtained
without this additive.
(13) (a) Inokuchi, T.; Kawafuchi, H. Tetrahedron 2004, 60, 11969.
(b) Jahn, U.; Dinca, E. Chem. - Eur. J. 2009, 15, 58. (c) Jahn, U.; Dinca, E.
J. Org. Chem. 2010, 75, 4480. (d) Dinca, E.; Hartmann, P.; Smrcek, J.;
Dix, I.; Jones, P. G.; Jahn, U. Eur. J. Org. Chem. 2012, 2012, 4461.
(14) Hayashi, M.; Shibuya, M.; Iwabuchi, Y. Synlett 2012, 23, 1025.
(15) Reducing the size of the chiral auxiliary to a 2-methylpyrrolidine
produced the desired product in 96% yield with a d.r. of 4.6/1 (see the
(16) (a) Curtin, M. L.; Dai, Y.; Davidsen, S. K.; Frey, R. R.; Guo, Y.;
Heyman, H. R.; Holms, J. H.; Ji, Z.; Michaelides, M. R.; Vasudevan, A.;
Wada, C. K. Inhibitors of histone deacetylase and their therapeutic use.
U.S. Patent 0,177,594, Nov 28, 2002. (b) Wada, C. K.; Frey, R. R.; Ji, Z.;
Curtin, M. L.; Garland, R. B.; Holms, J. H.; Li, J.; Pease, L. J.; Guo, J.;
Glaser, K. B.; Marcotte, P. A.; Richardson, P. L.; Murphy, S. S.; Bouska, J.
J.; Tapang, P.; Magoc, T. J.; Albert, D. H.; Davidsen, S. K.; Michaelides,
M. R. Bioorg. Med. Chem. Lett. 2003, 13, 3331.
(17) Because of the increased steric demand of the PMB substituent on
nitrogen, the TEMPO conditions had to be used in lieu of LNO
oxidation.
(18) In separate experiments, a reaction between TEMPO and triflic
anhydride could be observed and substantiated by changes in the 1H and
19F NMR spectra. However, characterization and identification of the
resulting species were inconclusive. See the SI for further details.
(19) The substitution of I leading to II could also conceivably result
from attack of TEMPO• and release of TfO•. However, this type of
reaction is mechanistically unprecedented in amide activation.
REFERENCES
(1) White, M. C. Science 2012, 335, 807.
■
(2) For general reviews of the synthesis of α-keto amides, see: (a) De
Risi, C.; Pollini, G. P.; Zanirato, V. Chem. Rev. 2016, 116, 3241.
(b) Kumar, D.; Vemula, S. R.; Cook, G. R. ACS Catal. 2016, 6, 4920.
(3) For selected examples of α-keto amide synthesis, see: (a) Zhang,
C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28. (b) Du, F.-T.; Ji, J.-X. Chem.
Sci. 2012, 3, 460. (c) Deshidi, R.; Kumar, M.; Devari, S.; Shah, B. A.
Chem. Commun. 2014, 50, 9533. (d) Liu, L.; Du, L.; Zhang-Negrerie, D.;
Du, Y.; Zhao, K. Org. Lett. 2014, 16, 5772. (e) Li, W.; Duan, Z.; Zhang,
X.; Zhang, H.; Wang, M.; Jiang, R.; Zeng, H.; Liu, C.; Lei, A. Angew.
Chem., Int. Ed. 2015, 54, 1893. (f) Wang, Z.; Liu, C.; Huang, Y.; Hu, Y.;
Zhang, B. Chem. Commun. 2016, 52, 2960. (g) Nagaki, A.; Takahashi, Y.;
Yoshida, J. Angew. Chem., Int. Ed. 2016, 55, 5327. (h) Ma, F.; Liu, H.;
Chen, J. Tetrahedron Lett. 2016, 57, 5246. (i) Wan, J.-P.; Lin, Y.; Cao, X.;
Liu, Y.; Wei, L. Chem. Commun. 2016, 52, 1270.
(4) For selected synthetic applications of α-keto amides, see: (a) Kou,
K. G.M.; Le, D. N.; Dong, V. M. J. Am. Chem. Soc. 2014, 136, 9471.
(b) Goudedranche, S.; Pierrot, D.; Constantieux, T.; Bonne, D.;
́
Rodriguez, J. Chem. Commun. 2014, 50, 15605. (c) Echave, H.; Lopez,
R.; Palomo, C. Angew. Chem., Int. Ed. 2016, 55, 3364. (d) Xu, X.-M.;
Zhao, L.; Zhu, J.; Wang, M.-X. Angew. Chem., Int. Ed. 2016, 55, 3799.
(e) Chen, Q.; Tang, Y.; Huang, T.; Liu, X.; Lin, L.; Feng, X. Angew.
Chem., Int. Ed. 2016, 55, 5286. (f) Du, Y.; Yu, A.; Jia, J.; Zhang, Y.; Meng,
X. Chem. Commun. 2017, 53, 1684.
(5) Chen, B.-C.; Zhou, P.; Davis, F. A.; Ciganek, E. Org. React. 2003,
62, 1.
(6) Song, B.; Wang, S.; Sun, C.; Deng, H.; Xu, B. Tetrahedron Lett.
2007, 48, 8982. (b) Shao, J.; Huang, X.; Wang, S.; Liu, B.; Xu, B.
Tetrahedron 2012, 68, 573.
(7) For general reviews, see: (a) Smith, A. M. R.; Hii, K. K. Chem. Rev.
2011, 111, 1637. (b) Vilaivan, T.; Bhanthumnavin, W. Molecules 2010,
15, 917.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX