Journal of Inorganic and General Chemistry
ARTICLE
Zeitschrift für anorganische und allgemeine Chemie
15782 reflections (θmax = 30.561°), 8306 unique (Rint = 0.0521);
References
317 parameters; largest max./min in the final difference Fourier
synthesis 1.064 e·Å–3/ –1.117 e·Å–3; max./min. transmission 0.75/
0.14; R1 = 0.0455 [I Ͼ 2σ(I)], wR2 = 0.1217 (all data). Crystal
data for 2: [C58H82Ga2I2N4Sb2], M = 1472.01, yellowish-green
[1] R. West, M. J. Fink, J. Michl, Science 1981, 214, 1343–1344.
[2] M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, J.
Am. Chem. Soc. 1981, 103, 4587–4589.
[3] a) K. S. Pitzer, J. Am. Chem. Soc. 1948, 70, 2140–2145; b) J.
Goubeau, Angew. Chem. 1957, 69, 77–83.
[4] a) P. P. Power, Chem. Rev. 1999, 99, 3463–3503; b) R. C. Fischer,
P. P. Power, Chem. Rev. 2010, 110, 3877–3923.
[5] a) G. Trinquier, J.-P. Malrieu, J. Am. Chem. Soc. 1987, 109, 5303–
5315; b) H. Jacobsen, T. Ziegler, J. Am. Chem. Soc. 1994, 116,
3667–3679; c) H. Grützmacher, T. Fässler, Chem. Eur. J. 2000,
6, 2317–2325; d) J.-D. Guo, D. J. Liptrot, S. Nagase, P. P. Power,
Chem. Sci. 2015, 6, 6235–6244; e) D. J. Liptrot, P. P. Power, Nat.
Rev. Chem. 2017, 1, 0004.
[6] a) P. P. Power, Nature 2010, 463, 171–177; b) P. P. Power, Chem.
Recueil 2012, 12, 238–255; c) S. Yadav, S. Saha, S. S. Sen, Chem-
CatChem. 2016, 8, 486–501.
¯
crystal, (0.085ϫ0.068ϫ0.031 mm); triclinic, space group P1;
a = 10.3382(15) Å, b = 12.2802(17) Å, c = 13.153(2) Å; α =
93.716(7)°, β = 106.674(6)°, γ = 107.277(6)°, V = 1506.7(4) Å3;
Z = 1; μ = 2.834 mm–1; ρcalc = 1.622 g·cm–3; 32391 reflections
(θmax = 30.748°), 9075 unique (Rint = 0.0432); 317 parameters;
largest max./min in the final difference Fourier synthesis 0.891
e·Å–3/ –0.865 e·Å–3; max./min. transmission 0.75/0.67; R1
=
0.0344 [I Ͼ 2σ(I)], wR2 = 0.0640 (all data). Crystal data for 3:
[C62H92Ga2N4O2Sb2], 1308.33, pale yellow crystal,
M
=
(0.236ϫ0.075ϫ0.058 mm); monoclinic, space group P21/c; a =
18.2246(10) Å, b = 15.8444(8) Å, c = 23.0076(12) Å; α = 90°,
β = 106.313(3)°, γ = 90°, V = 6376.2(6) Å3; Z = 4; μ =
1.716 mm–1; ρcalc = 1.363 g·cm–3; 216403 reflections (θmax
=
[7] a) T. Sasamori, N. Tokitoh, Dalton Trans. 2008, 1395–1408; b)
J. D. Protasiewicz, Multiply Bonded Compounds of Group 15 Ele-
ments, in Comprehensive Inorganic Chemistry II, 2nd ed. (Eds. J.
Reedijk, K. Poeppelmeier), vol. 1, 2013, pp 325–348; c) J. S.
Jones, B. Pan, F. P. Gabbaï, Group 15 Metal–Metal Bonds, in Mo-
lecular Metal–Metal Bonds (Ed.: S. T. Liddle), 2015, Wiley-VCH
Verlag GmbH & Co.
[8] Cambridge Structural Database, Version 5.37, see also: F. H.
Allen, Acta Crystallogr., Sect. B 2002, 58, 380–388.
[9] M. Yoshifuji, Eur. J. Inorg. Chem. 2016, 607–615.
[10] W. Kutzelnigg, Angew. Chem. 1984, 96, 262–286; Angew. Chem.
Int. Ed. Engl. 1984, 23, 272–295.
[11] a) Y. Wang, G. H. Robinson, Inorg. Chem. 2011, 50, 12326–
12337; b) D. J. D. Wilson, J. L. Dutton, Chem. Eur. J. 2013, 19,
13626–13637; c) Y. Wang, G. H. Robinson, Inorg. Chem. 2014,
53, 11815–11832; d) R. Kretschmer, D. A. Ruiz, C. E. Moore,
A. L. Rheingold, G. Bertrand, Angew. Chem. 2014, 126, 8315–
8318; Angew. Chem. Int. Ed. 2014, 53, 8176–8179.
[12] a) N. Tokitoh, Y. Arai, T. Sasamori, R. Okazaki, S. Nagase, H.
Uekusa, Y. Ohashi, J. Am. Chem. Soc. 1998, 120, 433–434; b) B.
Twamley, C. D. Sofield, M. M. Olmstead, P. P. Power, J. Am.
Chem. Soc. 1999, 121, 3357–3367; c) N. Tokitoh, J. Organomet.
Chem. 2000, 611, 217–227; d) T. Sasamori, Y. Arai, N. Takeda,
R. Okazaki, Y. Furukawa, M. Kimura, S. Nagase, N. Tokitoh,
Bull. Chem. Soc. Jpn. 2002, 75, 661–675; e) M. Sakagami, T.
Sasamori, H. Sakai, Y. Furukawa, N. Tokitoh, Chem. Asian J.
2013, 8, 690–693; f) D. Dange, A. Davey, J. A. B. Abdalla, S.
Aldridge, C. Jones, Chem. Commun. 2015, 51, 7128–7131; g)
P. K. Majhi, H. Ikeda, T. Sasamori, H. Tsurugi, K. Mashima, N.
Tokitoh, Organometallics 2017, 36, 1224–1226.
[13] a) F. A. Cotton, A. H. Cowley, X. Feng, J. Am. Chem. Soc. 1998,
120, 1795–1799; b) P. Vilarrubias, Mol. Phys. 2017, 115, 2597–2604.
[14] T. Sasamori, N. Tokitoh, Dalton Trans. 2008, 1395–1408.
[15] a) C. Jones, Coord. Chem. Rev. 2001, 215, 151–169; b) H. J.
Breunig, T. Borrmann, E. Lork, C. I. Ra¸t, U. Rosenthal, Organo-
metallics 2007, 26, 5364–5368.
[16] T. Sasamori, E. Mieda, N. Nagahora, K. Sato, D. Shiomi, T.
Takui, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh,
J. Am. Chem. Soc. 2006, 128, 12582–12588.
33.217°), 22332 unique (Rint = 0.0670); 671 parameters; largest
max./min in the final difference Fourier synthesis 4.113 e·Å–3/
–1.452 e·Å–3; max./min. transmission 0.75/0.65; R1 = 0.0535
[I Ͼ 2σ(I)], wR2 = 0.1458 (all data).
[20] a) M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354–396;
b) C. J. Allan, C. L. B. Macdonald, Low-Coordinate Main Group
Compounds – Group 13. Comprehensive Inorganic Chemistry II,
vol 1, Oxford: Elsevier; 2013, p. 485–566; c) N. J. Hardman,
A. D. Phillips, P. P. Power, ACS Symp. Ser. 2002, 822, 2–15.
[21] Cambridge Structural Database, Version 5.37, see also: F. H.
Allen, Acta Crystallogr., Sect. B 2002, 58, 380–388. Seven hits
for RSb=SbR (R defined as “C“, coordination number of Sb set
to 2) were found, which show Sb=Sb bond lengths from 2.642 to
2.751 Å with a mean value of 2.680 Å
[22] Cambridge Structural Database, Version 5.37, see also: F. H.
Allen, Acta Crystallogr., Sect. B 2002, 58, 380–388. 19 distibines
R2Sb–SbR2 (R defined as “C“, coordination number of Sb set to
3) were found in the Cambridge Structural [Version 5.38, see also:
F. H. Allen, Acta Crystallogr., Sect. B 2002, 58, 380–388 with
Sb–Sb bond lengths ranging from 2.797 to 3.030 Å with a mean
of 2.858 Å.
[23] a) S. Nagase, S. Suzuki, T. Kurakake, Chem. Commun. 1990,
1724–1726; b) C.-H. Lai, M.-D. Su, J. Organomet. Chem. 2014,
751, 379–389.
[24] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186–197.
[25] C. Ganesamoorthy, C. Helling, C. Wölper, W. Frank, E. Bill, G. E.
Cutsail III, S. Schulz, Nat. Commun. 2018, 9, 87.
[26] C. Ganesamoorthy, J. Krüger, C. Wölper, A. S. Nizovtsev, S.
Schulz, Chem. Eur. J. 2017, 23, 2461–2468.
[27] F. Thomas, S. Schulz, M. Nieger, Eur. J. Inorg. Chem. 2001, 161–166.
[28] S. Schulz, Adv. Organomet. Chem. 2003, 49, 225–317.
[29] J. Krüger, C. Ganesamoorthy, L. John, C. Wölper, S. Schulz,
Chem. Eur. J. 2018, 24, 9157.
[30] J. B. Waters, T. A. Everitt, W. K. Myers, J. M. Goicoechea, Chem.
Sci. 2016, 7, 6981–6987.
[31] J. B. Waters, Q. Chen, T. A. Everitt, J. M. Goicoechea, Dalton
Trans. 2017, 46, 12053–12066.
[32] a) J. P. Wagner, P. R. Schreiner, J. Chem. Theory Comput. 2016, 12,
231–237; b) D. J. Liptrot, P. P. Power, Nat. Rev. Chem. 2017, 1, 0004.
[33] The synthesis of Sb(OEt)3 was performed analogously to that of
As(OEt)3: K. Moedritzer, C. O. Denney, J. T. Yoke, Inorg. Synth.
1968, 11, 181–183.
[34] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467–473.
[35] a) G. M. Sheldrick, SHELXL-2014, Program for the Refinement of
Crystal Structures University of Göttingen, Göttingen, Germany
2014; b) G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–
122; c) shelXle, A Qt GUI for SHELXL, C. B. Hübschle, G. M. Shel-
drick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284.
[17] a) L. Tuscher, C. Ganesamoorthy, D. Bläser, C. Wölper, S. Schulz,
Angew. Chem. 2015, 127, 10803; Angew. Chem. Int. Ed. 2015, 54,
10657; b) L. Tuscher, C. Helling, C. Ganesamoorthy, J. Krüger, C.
Wölper, W. Frank, A. S. Nizovtsev, S. Schulz, Chem. Eur. J. 2017,
23, 12297; c) L. Tuscher, C. Helling, C. Wölper, W. Frank, A. S.
Nizovtsev, S. Schulz, Chem. Eur. J. 2018, 24, 3241–3250.
[18] N. J. Hardman, B. E. Eichler, P. P. Power, Chem. Commun. 2000,
1991–1992.
[19] Crystal data for 1: [C58H82Br2Ga2N4Sb2], M = 1378.03, yellow-
ish-green crystal, (0.183ϫ0.171ϫ0.149 mm); triclinic, space
¯
group P1; a = 10.487(4) Å, b = 12.427(4) Å, c = 13.362(5) Å; α
= 94.057(18)°, β = 106.627(18)°, γ = 107.006(17)°, V = Received: May 15, 2018
1572.9(10) Å3; Z = 1; μ = 3.003 mm–1; ρcalc = 1.455 g·cm–3;
Published online:
Z. Anorg. Allg. Chem. 0000, 0–0
6
© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim