Beilstein J. Org. Chem. 2014, 10, 1135–1142.
acid. Amino acid 40 was then debenzylated under standard Acknowledgements
hydrogenation conditions with concomitant reduction of the O. R., M. B. and C. D. thank the Deutsche Forschungsgemein-
double bond, thus leading to lipidated amino acid building schaft (DFG, SFB 803 "Functionality controlled by organiza-
block 41 suitable for SPPS in 75% yield for the final step. tion in and between membranes") and the Fonds der Chemis-
chen Industrie (FCI, Sachkostenzuschuss) for financial support.
Conclusion
M. G. and D. S. thank the Danish National Research Founda-
In summary, we have developed a divergent approach for the tion (DNRF)-funded Center for Materials Crystallography
synthesis of several (2S,3S)-3-hydroxyleucine building blocks (CMC).
employing stereoisomerically pure amino alcohol 5 [32].
References
1. Maehr, H.; Liu, C.-M.; Palleroni, N. J.; Smallheer, J.; Todaro, L.;
Applying different protecting group strategies, we were able to
prepare (2S,3S)-3-hydroxyleucine derivatives suitable for
Williams, T. H.; Blount, J. F. J. Antibiot. 1986, 39, 17–25.
further modification both at the carboxy and the amino moiety,
as well as for solid-phase peptide synthesis (SPPS). Further-
2. Nakagawa, M.; Hayakawa, Y.; Furihata, K.; Seto, H. J. Antibiot. 1990,
more, we have employed such building blocks for the synthesis
of protected analogues 15a,b of the tripeptide unit of naturally
3. Maskey, R. P.; Fotso, S.; Sevvana, M.; Usón, I.; Grün-Wollny, I.;
4. Uchihata, Y.; Ando, N.; Ikeda, Y.; Kondo, S.; Hamada, M.;
5. Oh, D.-C.; Poulsen, M.; Currie, C. R.; Clardy, J. Nat. Chem. Biol. 2009,
occurring muraymycin nucleoside antibiotics.
We have also established unprecedented protocols for early-
and late-stage derivatizations of the 3-hydroxy group of the
(2S,3S)-3-hydroxyleucine scaffold by esterification of the
alcohol or cross metathesis of the corresponding acryloyl ester,
respectively. This led to an efficient and versatile access
towards acylated (2S,3S)-3-hydroxyleucine derivatives, thus
enabling the preparation of according natural products and
analogues thereof. As a first proof-of-principle experiment, the
lipidated (2S,3S)-3-hydroxyleucine subunit of antibacterially
active muraymycins B6 and B7 was synthesized in protected
form. Overall, our results thus contribute to the methodology
for the synthesis of unusual non-proteinogenic amino acid
motifs for synthetic natural product chemistry.
6. Augustiniak, H.; Forche, E.; Reichenbach, H.; Wray, V.; Gräfe, U.;
Höfle, G. Liebigs Ann. Chem. 1991, 361–366.
7. McDonald, L. A.; Barbieri, L. R.; Carter, G. T.; Lenoy, E.; Lotvin, J.;
Petersen, P. J.; Siegel, M. M.; Singh, G.; Williamson, R. T.
8. Kimura, K.-i.; Bugg, T. D. H. Nat. Prod. Rep. 2003, 20, 252–273.
9. Winn, M.; Goss, R. J. M.; Kimura, K.-i.; Bugg, T. D. H. Nat. Prod. Rep.
10.Ikeda, M.; Wachi, M.; Jung, H. K.; Ishino, F. M. M. J. Bacteriol. 1991,
173, 1021–1026.
11.Bouhss, A.; Mengin-Lecreulx, D.; Le Beller, D.; van Heijenoort, J.
Mol. Microbiol. 1999, 34, 576–585.
Supporting Information
12.Dini, C. Curr. Top. Med. Chem. 2005, 5, 1221–1236.
The Supporting Information features the preparation,
analytical data and copies of 1H and 13C NMR spectra of
compounds 6–9, 11–13, 15–19, 21–24, 26–28, 30, 31, 33,
34, 36–41 and racemic HPLC reference S1 as well as
crystallographic data for compound 6.
13.Bugg, T. D. H.; Lloyd, A. J.; Roper, D. I. Infect. Disord.: Drug Targets
14.Chung, B. C.; Zhao, J.; Gillespie, R. A.; Kwon, D.-Y.; Guan, Z.;
Hong, J.; Zhou, P.; Lee, S.-Y. Science 2013, 341, 1012–1016.
15.Yamashita, A.; Norton, E.; Petersen, P. J.; Rasmussen, B. A.;
Singh, G.; Yang, Y.; Mansour, T. S.; Ho, D. M.
Supporting Information File 1
Bioorg. Med. Chem. Lett. 2003, 13, 3345–3350.
Crystallographic data for compound 6.
16.Tanino, T.; Ichikawa, S.; Al-Dabbagh, B.; Bouhss, A.; Oyama, H.;
Matsuda, A. ACS Med. Chem. Lett. 2010, 1, 258–262.
Supporting Information File 2
17.Tanino, T.; Al-Dabbagh, B.; Mengin-Lecreulx, D.; Bouhss, A.;
Oyama, H.; Ichikawa, S.; Matsuda, A. J. Med. Chem. 2011, 54,
Experimental procedures and NMR spectra of compounds
6–9, 11–13, 15–19, 21–24, 26–28, 30, 31, 33, 34, 36–41
and S1.
18.Lin, Y.-I.; Li, Z.; Francisco, G. D.; McDonald, L. A.; Davis, R. A.;
Singh, G.; Yang, Y.; Mansour, T. S. Bioorg. Med. Chem. Lett. 2002, 12,
19.Spork, A. P.; Koppermann, S.; Ducho, C. Synlett 2009, 2503–2507.
1141