10.1002/chem.202101259
Chemistry - A European Journal
ARTICLE
[15] W. Chen, H. Fang, K. Xie, M. Oestreich, Chem. Eur. J. 2020, 26,
15126−15129.
However, the most puzzling result was obtained for product 10d.
While the deuterium content of 9d was still high, only 54%
deuterium incorporation could be detected for 10d. Also, small
amounts of protodesilylated surrogate 4 (m/z = 158) as well as
biphenyl (m/z = 154) were detected by GCMS analysis of the
crude reaction mixture. In the latter case both deuterium atoms of
4 were removed and only in this reaction with this particular
substrate.
[16] I. Chatterjee, M. Oestreich, Angew. Chem. 2015, 127, 1988–1991;
Angew. Chem. Int. Ed. 2015, 54, 1965−1968.
[17] I. Chatterjee, Z.-W. Qu, S. Grimme, M. Oestreich, Angew. Chem. 2015,
127, 12326−12330; Angew. Chem. Int. Ed. 2015, 54, 12158−12162.
[18] I. Chatterjee, M. Oestreich, Org. Lett. 2016, 18, 2463−2466.
[19] W. Yuan, P. Orecchia, M. Oestreich, Chem. Commun. 2017, 53,
10390−10393.
[20] J. D. Webb, V. S. Laberge, S. J. Geier, D. W Stephan, C. M. Crudden,
Chem. Eur. J. 2010, 16, 4895−4902.
As proposed by Oestreich and in our previous report, the InBr3
acts as Lewis acid and abstracts a hydride anion from the
surrogate 4 to initiate the reaction. The Wheland complex 11 acts
as strong Brønsted acid and protonates the starting material 7 to
afford intermediate A. The catalytic cycle is either completed upon
reaction of A with the HD surrogate 4 or by hydride transfer from
[HInBr3]-. When comparing the results for the synthesis of the
deuterium-labelled compounds 10c and 10d the loss of 31% of
deuterium-labelling does not seem to be related to the proposed
mechanism. Unfortunately, until now we were not able to identify
the proton source which caused the relatively low deuterium
labelling in product 10d.
[21] B. Michelet, C. Bour, V. Gandon, Chem. Eur. J. 2014, 20, 14488−14492.
[22] J. Mohr, M. Oestreich, Angew. Chem. 2014, 126, 13494−13497; Angew.
Chem. Int. Ed. 2014, 53, 13278−13281.
[23] A. Djurovic, M. Vayer, Z. Li, R. Guillot, J.-P. Baltaze, V. Gandon, C. Bour,
Org. Lett. 2019, 21, 8132−8137.
[24] W. Chen, M. Oestreich, Org. Lett. 2019, 21, 4531−4534.
[25] P. Orecchia, W. Yuan, M. Oestreich, Angew. Chem. 2019, 131,
3617−3621; Angew. Chem. Int. Ed. 2019, 58, 3579−3583.
[26] A. Bhunia, K. Bergander, A. Studer, J. Am. Chem. Soc. 2018, 140,
16353−16359.
[27] A. Simonneau, M. Oestreich, Angew. Chem. 2013, 125, 12121−12124;
Angew. Chem. Int. Ed. 2013, 52, 11905−11907.
[28] A. Simonneau, J. Friebel, M. Oestreich, Eur. J. Org. Chem. 2014,
2077−2083.
[29] A. Lefranc, Z.-W. Qu, S. Grimme, M. Oestreich, Chem. Eur. J. 2016, 22,
10009−10016.
Conclusion
[30] I. Chatterjee, M. Oestreich, Org. Lett. 2016, 18, 2463−2466.
[31] S. Bähr, M. Oestreich, Angew. Chem. 2017, 129, 52−59; Angew. Chem.
Int. Ed. 2017, 56, 52−59.
In conclusion, indium tribromide proved to be a suitable Lewis-
acid based catalyst for the transfer-hydrogenation from
dihydroaromatic compounds to alkenes. The scope of the
reaction could be significantly expanded not only to electron-
deficient starting materials but also towards alkyl-substituted
alkenes. The hydrodeuterogenation as well as the deuterohydro-
genation with suitable dihydroaromatic compounds could be
realised for selected examples in acceptable to good yields and
incorporation of deuterium at the desired position of the
hydrocarbon product.
[32] S. Keess, M. Oestreich, Org. Lett. 2017, 19, 1898−1901.
[33] S. Keess, M. Oestreich, Chem. Eur. J. 2017, 23, 5925−5928.
[34] W. Yuan, P. Orecchia, M. Oestreich, Chem. Commun. 2017, 53,
10390−10393.
[35] J. C. L. Walker, M. Oesterich, Angew. Chem. 2019, 131, 15530−15534;
Angew. Chem. Int. Ed. 2019, 58, 15386−15389.
[36] S. Keess, M. Oestreich, Chem. Sci. 2017, 8, 4688−4695.
[37] J. C. L. Walker, M. Oestreich, Synlett 2019, 30, 2216−2332.
[38] M. Oestreich, Angew. Chem. Int. Ed. 2016, 128, 504−509; Angew. Chem.
Int. Ed. 2016, 55, 494−499.
[39] A. Simonneau, M. Oestreich, Nat. Chem. 2015, 7, 816−822.
[40] a) J. C. L. Walker, M. Oestreich, Org. Lett. 2018, 20, 6411−6414.
For recent alternative HD surrogates, see: b) P. Yang, H. Xu, J. Zhou,
Angew. Chem. 2014, 126, 12406−12409; Angew. Chem. Int. Ed. 2014,
53, 12210−12213. c) M. Espinal-Viguri, S. E. Neale, N. T. Coles, S. A.
Macgregor, R. L. Webster, J. Am. Chem. Soc. 2019, 141, 572−582. d) T.
G. Linford-Wood, N. T. Coles, R. L. Webster, Green Chem. 2021, DOI:
10.1039/D0GC04175K. e) Y. Wang, X. Cao, L. Zhao, C. Pi, J. Ji, X. Cui,
Y. Wu, Adv. Synth. Catal. 2020, 362, 4119−4129. f) S. E. Sloane, A.
Reyes, Z. P. Vang, L. Li, K. T Behlow, J. R. Clark, Org. Lett. 2020, 22,
9139−9144.
Acknowledgement
The financial support by the German Science Foundation GRK 2226 is
gratefully acknowledged.
Keywords: alkenes • catalysis • indium tribromide • transfer-
hydrogenation • regioselectivity
[41] L. Li, G. Hilt, Org. Lett. 2020, 22, 1628−1632.
[1]
[2]
[3]
G. Hilt, Chem. Rec. 2014, 14, 386−395.
[42] a) S. J. Meek, C. L. Pitman, A. J. M. Miller, J. Chem. Educ. 2016, 93,
275−286. b) E. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012,
51, 3066−3072. c) T. Giagou, M. P. Meyer, Chem. Eur. J. 2010, 16,
10616−10628.
P. Rꢀse, G. Hilt, Synthesis 2016, 48, 463−492.
G. Hilt, K. I. Smolko, Angew. Chem. 2003, 115, 2901–2903; Angew.
Chem. Int. Ed. 2003, 42, 2795–2797.
[4]
[5]
G. Hilt, J. Janikowski, W. Hess, Angew. Chem. 2006, 118, 5328–5331;
Angew. Chem. Int. Ed. 2006, 45, 5204–5206.
[43] a) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. 2018, 130,
1774−1804; Angew. Chem. Int. Ed. 2018, 57, 1758−1784. b) R. Jarling,
M. Sadeghi, M. Drozdowska, S. Lahme, W. Buckel, R. Rabus, F. Widdel,
B. T. Golding, H. Wilkes, Angew. Chem. Int. Ed. 2012, 124, 1362−1366;
Angew. Chem. Int. Ed. 2012, 51, 1334−1338. c) J. P. Klinman, J. Phys.
Org. Chem. 2010, 23, 606−612. d) R. E. White, J. P. Miller, L. V. Favreau,
A. Bhattacharyya, J. Am. Chem. Soc. 1986, 108, 6024−6031. e) A. R.
Battersby, A. L. Gutman, C. J. R. Fookes, H. Günther, H. Simon, J. Chem.
Soc., Chem. Commun. 1981, 645−647.
A.-L. Auvinet, J. P. A. Harrity, G. Hilt, J. Org. Chem. 2010, 75, 3893–
3896.
[6]
[7]
[8]
[9]
G. Hilt, C. Hengst, Synlett 2006, 3247–3250.
G. Hilt, C. Hengst, J. Org. Chem. 2007, 72, 7337–7342.
G. Hilt, S. Lüers, K. Harms, J. Org. Chem. 2004, 69, 624–630.
G. Hilt, K. I. Smolko, B. V. Lotsch, Synlett 2002, 1081–1084.
[10] B. V. Rao, A. S. Rao, Synth. Commun. 1995, 25, 1531−1543.
[11] F. Erver, J. R. Kuttner, G. Hilt, J. Org. Chem. 2012, 77, 8375−8385.
[12] J. R. Kuttner, G. Hilt, Synthesis 2015, 47, 1170−1180.
[13] T. V. RajanBabu, W. A. Nugent, M. S. Beattie, J. Am. Chem. Soc. 1990,
112, 6408−6409.
[44] G. Hilt, F. Pünner, J. Möbus, V. Naseri, M. A. Bohn, Eur. J. Org. Chem.
2011, 5962−5966.
[14] T. V. RajanBabu, W. A. Nugent, J. Am. Chem. Soc. 1994, 116, 986−997.
4
This article is protected by copyright. All rights reserved.