Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Utilizing optimal formylation reaction conditions at room
temperature, various aliphatic and aromatic, secondary and primary
amines were successfully converted into the desired formamides
with good to excellent yields (Table 3). Both of the acyclic (1a, 1d, 1e,
1g-1j, and 1ak) and cyclic (1m-1o, and 1ag-1aj) secondary amines
could be transformed to the corresponding formamides in excellent
yields. Importantly, the hydrosilylation of CO2 to formamides showed
the potential chemoselectivity. The carbonyl and ester groups could
be tolerated under these conditions, as exemplified by the substrate
1ag and 1af. Additionally, primary amines (1p-1z, 1ab-1ad, and 1al-
1an) proceeded in a similar fashion to secondary amines, generating
monoformylated products. The formylation protocol is also
compatible with a variety of halides (1i, 1j, 1r, and 1z). The sterically
hindered amines (1e, 1q, 1ac, and 1ad) were also suitable for this
transformation, giving the desired formamides in good to excellent
yields.
R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy; M. Beller, Angew. Chem.
DOI: 10.1039/C8CC05948A
Int. Ed.,2010, 49, 9777-9780; (d) C. Ziebart, C. Federsel, P. Anbarasan, R.
Jackstell, W. Baumann, A. Spannenberg; M. Beller, J. Am. Chem. Soc.,2012,
134, 20701-20704; (e) S. Bontemps, L. Vendier; S. Sabo-Etienne, J. Am. Chem.
Soc.,2014, 136, 4419-4425.
3
G. A. Olah, A. Goeppert; G. K. S. Prakash, In Beyond Oil and Gas: The
Methanol Economy, Wiley-VCH: Weinheim, 2009.
4 For CO2 hydrogenation to methanol, see recent reviews: (a) Y.-N. Li, R. Ma,
L.-N. He; Z.-F. Diao, Catal. Sci. Technol.,2014, 4, 1498-1512; (b) E. Alberico; M.
Nielsen, Chem. Commun.,2015, 51, 6714; (c) J. Klankermayer, S. Wesselbaum,
K. Beydoun; W. Leitner, Angew. Chem. Int. Ed.,2016, 55, 7296 and references
therein.
5 (a) C. Das Neves Gomes, E. Blondiaux, P. Thuéry; T. Cantat, Chem. Eur.
J.,2014, 20, 7098 and references therein; (b) R. Pal, T. L. Groy; R. J. Trovitch,
Inorg. Chem.,2015, 54, 7506-7515; (c) Y. Yang, M. Xu; D. Song, Chem.
Commun.,2015, 51, 11293-11296; (d) A. Aloisi, J.-C. Berthet, C. Genre, P.
Thuery; T. Cantat, Dalton Trans.,2016, 45, 14774-14788; (e) Q.-Q. Ma, T. Liu,
S. Li, J. Zhang, X. Chen; H. Guan, Chem. Commun.,2016, 52, 14262-14265; (f)
T. J. Hadlington, C. E. Kefalidis, L. Maron; C. Jones, ACS Catal.,2017, 7, 1853-
1859; (g) T. Liu, W. Meng, Q.-Q. Ma, J. Zhang, H. Li, S. Li, Q. Zhao; X. Chen,
Dalton Trans.,2017, 46, 4504-4509.
Mechanistic proposals on metal hydride complex catalyzed
hydrosilylation of CO2 usually involve the insertion of CO2 into a
metal-H bond and generate CH4 as the final product.18 However,
this pathway was ruled out since no reaction was observed
6 T. C. Eisenschmid; R. Eisenberg, Organometallics,1989, 8, 1822-1824.
7 S. N. Riduan, Y. Zhang; J. Y. Ying, Angew. Chem. Int. Ed.,2009, 48, 3322-3325,
S3322/3321-S3322/3311.
between complex Ni
suggests that CO2 insertion into the Ni-H bond of Ni
1
with CO2 at 125 °C. This observation
might not
1
8
M.-A. Courtemanche, M.-A. Legare, E. Rochette; F.-G. Fontaine, Chem.
a catalysis related event. Catalyst Ni2 bearing a NMe arm
showed some similar reactivity (Table 1, entry 4; Table S4,
entries 8 and 10;), implying that the N-H gorup of Ni1 was not
necessary for the activation of CO2. Although we have not
identified the active catalyst in the aboved CO2 reduction
reactions, we speculate that an alternative pathway for CO2
activation may involve the nucleophlic attack of CO2 by the
iminic nitrogen of the ligand. The nucleophilicity of the imine
-donating hydride
ligand is introduced. Further mechanistic studies are ongoing.
In summary, we have successfully synthesized and fully
characterized several readily accessible dearomatized PN3P*-
nickel hydride pincer complexes via an oxidative addition
process. The first example of nickel catalyzed hydrosilylation of
CO2 to methanol has been achieved, with an unprecedentedly
high turnover number of 4900. Moreover, these PN3P*-nickel
hydride pincer complexes are capable of selectively catalyzing
reductive methylation and formylation of amines with CO2 with
a very broad substrate scope.
Commun.,2015, 51, 6858-6861.
9 T. T. Metsänen; M. Oestreich, Organometallics,2015, 34, 543-546.
10 M. G. Mazzotta, M. Xiong; M. M. Abu-Omar, Organometallics,2017, 36,
1688-1691.
11 (a) A. Tlili, E. Blondiaux, X. Frogneux; T. Cantat, Green Chem.,2015, 17, 157
and references therein; (b) Y. Li, X. Cui, K. Dong, K. Junge; M. Beller, ACS
Catal.,2017, 7, 1077 and references therein.
12 C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuery, M. Ephritikhine; T.
Cantat, Angew. Chem. Int. Ed.,2012, 51, 187-190.
13 (a) Y. Li, X. Fang, K. Junge; M. Beller, Angew. Chem. Int. Ed.,2013, 52, 9568-
9571; (b) O. Jacquet, X. Frogneux, C. Das Neves Gomes; T. Cantat, Chem.
Sci.,2013, 4, 2127-2131.
14 (a) X. Frogneux, O. Jacquet; T. Cantat, Catal. Sci. Technol.,2014, 4, 1529-
1533; (b) C. Fang, C. Lu, M. Liu, Y. Zhu, Y. Fu; B.-L. Lin, ACS Catal.,2016, 7876-
7881; (c) S. Das, F. D. Bobbink, S. Bulut, M. Soudani; P. J. Dyson, Chem.
Commun.,2016, 52, 2497-2500.
15 X.-F. Liu, X.-Y. Li, C. Qiao, H.-C. Fu; L.-N. He, Angew. Chem. Int. Ed.,2017,
56, 7425-7429.
16 (a) H. Li, B. Zheng; K.-W. Huang, Coord. Chem. Rev.,2015, 293–294, 116 and
references therein-138; (b) Y. Pan, C.-L. Pan, Y. Zhang, H. Li, S. Min, X. Guo, B.
Zheng, H. Chen, A. Anders, Z. Lai, J. Zheng; K.-W. Huang, Chem. Asian J.,2016,
11, 1357-1360; (c) D. Gong, X. Zhang; K.-W. Huang, Dalton Trans.,2016, 45,
19399-19407; (d) C. Guan, D.-D. Zhang, Y. Pan, M. Iguchi, M. J. Ajitha, J. Hu,
H. Li, C. Yao, M.-H. Huang, S. Min, J. Zheng, Y. Himeda, H. Kawanami; K.-W.
Huang, Inorg. Chem.,2017, 56, 438-445; (e) H. Li, Y. Wang, Z. Lai; K.-W. Huang,
Conflicts of interest
There are no conflicts to declare.
ACS Catal.,2017, 7, 4446-4450; (f) T. P. Gonçalves; K.-W. Huang, J. Am. Chem.
Soc.,2017, 139, 13442-13449.
17 (a) N. A. Eberhardt; H. Guan, Chem. Rev.,2016, 116, 8373-8426; (b) During
the submission of this manuscript, a similar work was disclosed. see: D. Oren,
Y. Diskin-Posner, L. Avram, M. Feller, D. Milstein, Organometallics 2018.
18 (a) S. Chakraborty, J. A. Krause; H. Guan, Organometallics,2009, 28, 582-
586; (b) S. Chakraborty, Y. J. Patel, J. A. Krause; H. Guan, Polyhedron,2012, 32,
30-34; (c) L. Gonzalez-Sebastian, M. Flores-Alamo; J. J. Garcia,
Organometallics,2013, 32, 7186-7194; (d) K. Motokura, N. Takahashi, A.
Miyaji, Y. Sakamoto, S. Yamaguchi; T. Baba, Tetrahedron,2014, 70, 6951-
6956; (e) S. Chakraborty, P. Bhattacharya, H. Dai; H. Guan, Acc. Chem.
Res.,2015, 48, 1995-2003; (f) O. Santoro, F. Lazreg, Y. Minenkov, L. Cavallo; C.
S. J. Cazin, Dalton Trans.,2015, 44, 18138-18144.
Notes and references
1 For selected reviews of CO2 transformation, see: (a) T. Sakakura, J.-C. Choi;
H. Yasuda, Chem. Rev.,2007, 107, 2365-2387; (b) S. N. Riduan; Y. Zhang,
Dalton Trans.,2010, 39, 3347-3357; (c) M. Aresta, Carbon dioxide as chemical
feedstock. Wiley-VCH: Weinheim, 2010; p xix, 394 p; (d) M. Aresta, A.
Dibenedetto; A. Angelini, Chem. Rev.,2014, 114, 1709-1742; (e) C. Maeda, Y.
Miyazaki; T. Ema, Catal. Sci. Technol.,2014, 4, 1482-1497; (f) Q. Liu, L. Wu, R.
Jackstell; M. Beller, Nat. Commun.,2015, 6, 5933.
2 For selected examples, see: (a) P. G. Jessop, F. Joo; C.-C. Tai, Coord. Chem.
Rev.,2004, 248, 2425-2442; (b) R. Tanaka, M. Yamashita; K. Nozaki, J. Am.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins