Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Chemical Communications
The fluorinated scaffolds of
1 and 6 are similar to those in gas-
DOI: 10.1039/C8CC05148H
phase structures of previously investigated perfluorocyclo-
hexane29 and perfluoromethylcyclohexane.30 Both structures
exhibit no molecular symmetry. Strikingly different are their
C−O bonds: they are shorter in
steric demand for the CF3 vs. OH group.
5. a) I. Krossing and I. Raabe, Angew. Chem., Int. Ed. Engl., 2004, 43,
2066–2090; b) T. A. Engesser, M. R. Lichtenthaler, M. Schleep
and I. Krossing, Chem. Soc. Rev., 2016, 45, 789–899; c) I. M.
Riddlestone, A. Kraft, J. Schaefer and I. Krossing, Angew. Chem.
Int. Ed. Engl., 2018, 57, in press (DOI: 10.1002/anie.201710782).
6. S. H. Strauss, Chem. Rev., 1993, 93, 927–942.
7. N. Trapp, H. Scherer, S. A. Hayes, R. J. F. Berger, A. Kutt, N. W.
Mitzel, J. Saame and I. Krossing, Phys. Chem. Chem. Phys., 2011,
13, 6184–6191.
8. N. Trapp, Dissertation, Universität Freiburg, 2008.
9. A. Kraft, N. Trapp, D. Himmel, H. Böhrer, P. Schlüter, H. Scherer
and I. Krossing, Chem. Eur. J., 2012, 18, 9371–9380.
10. T. Köchner, N. Trapp, T. A. Engesser, A. J. Lehner, C. Röhr, S.
Riedel, C. Knapp, H. Scherer and I. Krossing, Angew. Chem. Int.
Ed., 2011, 50, 11253–11256.
6 than in 1 indicating a higher
The C−O distance in c-C6F10-1-(C6F5)OH at rg = 1.409(5) Å
indicates the steric demand of a pentafluorophenyl to be higher
than that of an OH group but less than that of a CF3 group.
Interestingly, the C−O distances in the diol are clearly different.
The axial C−O bond is about 0.02 Å longer than that the equa-
torial. This finding and the fact that the dihedral angle HOCO/C
of the equatorial OH group is the same within the error limits as
the corresponding parameter of the CF3-substituted alcohol,
emphasizes the conjugational effect mentioned above.
11. M. Elsayed Moussa, M. Fleischmann, E. V. Peresypkina, L. Dütsch,
M. Seidl, G. Balázs and M. Scheer, Eur. J. Inorg. Chem., 2017,
2017, 3222–3226.
12. J. Hegge, B. Hoge, K. O. Christe and R. Haiges, Angew. Chem. Int.
Ed., 2007, 46, 6155–6158.
13. S. Andreades and D. C. England, J. Am. Chem. Soc., 1961, 83,
4670–4671.
14. A. F. Baxter, J. Schaab, K. O. Christe and R. Haiges, Angew. Chem.
Int. Ed. 2018, 57, 8174–8177.
15. J. Schaab, A. F. Baxter, J. Hegge, T. Saal, M. Vasiliu, D. A. Dixon, R.
Haiges and K. O. Christe, publication in progress.
16. M. T. Nguyen, M. H. Matus, V. T. Ngan, R. Haiges, K. O. Christe
and D. A. Dixon, J. Phys. Chem. A, 2008, 112, 1298–1312.
17. K. Seppelt, Angew. Chem., 1977, 89, 325–325.
18. K. Seppelt, Angew. Chem. Int. Ed., 1977, 16, 322–323.
19. G. Kloeter and K. Seppelt, J. Am. Chem. Soc., 1979, 101, 347–349.
20. L. G. Anello, A. K. Price and R. F. Sweeney, J. Org. Chem., 1968,
33, 2692–2696.
Figure 5: Experimental (o) and model (—) radial distribution curves of 1 (left) and 6 (right)
for the gas electron diffraction experiments. The difference curve (exptl.–model) is
shown below. Vertical bars indicate interatomic distances, selected ones are labelled.
21. S. P. Kotun, J. D. Anderson and D. D. Des Marteau, J. Org. Chem.,
1992, 57, 1124–1131.
22. F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs, Chem. Phys.
Lett., 1998, 143.
23. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Chem. Phys.
Lett., 1989, 162, 165.
Acknowledgement
We thank the Magres-Verbund of the University Freiburg for
the NMR measurements. This work was financially supported by
Deutsche Forschungsgemeinschaft, joint grant KR2046/29-1
and MI477/33-1 and core-facility GED@BI grant MI477/21-2.
24. O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, 102, 346.
25. a) R. M. Guidry and R. S. Drago, J. Am. Chem. Soc., 1973, 95, 759;
b) A. Berkessel, J. A. Adrio, D. Hüttenhain and J. M. Neudörfl, J.
Am. Chem. Soc., 2006, 128, 8421; c) K. F. Purcell, J. A. Stikeleather
and S. D. Brunk, J. Mol. Spect., 1969, 32, 202; d) W. J. Middleton
and R. V. Lindsey, J. Am. Chem. Soc. 1964, 86, 4948; e) O.
Schrems, H. M. Oberhoffer and W. A. P. Luck, J. Phys. Chem.,
1984, 88, 4335.
26. a) R. J. F. Berger, M. Hoffmann, S. A. Hayes and N. W. Mitzel, Z.
Naturforsch., 2009, 64b, 1259; b) C. G. Reuter, Yu. V. Vishnevskiy,
S. Blomeyer and N. W. Mitzel, Z. Naturforsch., 2016, 71b, 1.
27. a) Yu. V. Vishnevskiy, J. Mol. Struct., 2007, 833, 30; b) Yu. V.
Vishnevskiy, J. Mol. Struct., 2007, 871, 24.
28. Yu. V. Vishnevskiy, M. A. Abaev, A. N. Rykov, M. E. Gurskii, P. A.
Belyakov, S. Y. Erdyakov, Yu. N. Bubnov and N. W. Mitzel, Chem.
Eur. J., 2012, 34, 10585.
29. a) O. Bastiansen, O. Hassel, L. K. Lund and M. Hakala, Acta Chem.
Scand., 1949, 3, 297; b) K. E. Hjortaas, K. O. Strømme, F. Sandberg
and T. Norin, Acta Chem. Scand., 1968, 22, 2965.
Conflicts of interest
There are no conflicts to declare.
Notes and references
§
Quantum chemical calculation were done at the (RI-)BP86/
def2-TZVPP22-level with the program Turbomole.23,24
1. T. W. Bentley and P. v. R. Schleyer, Adv. Phys. Org. Chem., 1977,
14, 1.
2. W. J. Middleton and R. V. Lindsey, J. Am. Chem. Soc., 1964, 86,
4948.
3. a) I. Krossing, Chem. Eur. J., 2001, 7, 490; b) T. J. Barbarich, S. T.
Handy, S. M. Miller, O. P. Anderson, P. A. Grieco and S. H. Strauss,
Organometallics, 1996, 15, 3776–3778.
4. a) J. J. Rockwell, G. M. Kloster, W. J. DuBay, P. A. Grieco, D. F.
Shriver and S. H. Strauss, Inorg. Chim. Acta, 1997, 263, 195–200;
30. G. R. Kafka, S. L. Masters, D. A. Wann, H. E. Robertson and D. W.
H. Rankin, J. Phys. Chem. A, 2010, 114, 11022.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins