4298 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 13
Simoni et al.
(15) Simoni, D.; Tolomeo, M. Retinoids, apoptosis and cancer. Curr.
Pharm. Des. 2001, 7, 1823-1837 and references therein.
(16) Loeliger, P.; Bollag, W.; Mayer, H. Arotinoids, a new class of
highly active retinoids. Eur. J. Med. Chem. 1980, 15, 9-15.
(17) Jong, L.; Lehmann, J. M.; Hobbs, P. D.; Harlev, E.; Huffman, J.
C.; Pfahl, M.; Dawson, M. I. Conformational effects on retinoid
receptor selectivity. 1. Effects of 9-double bond geometry on
retinoid X receptor activity. J. Med. Chem. 1993, 32, 2605-2613.
(18) Kagechika, H.; Himi, T.; Namikawa, K.; Kawachi, E.; Hashimoto,
Y.; Shudo, K. Retinobenzoic acids. 3. Structure-activity rela-
tionships of retinoidal azobenzene-4-carboxylic acids and stil-
bene-4-carboxylic acids. J. Med. Chem. 1989, 32, 1098-1108.
(19) Kagechika, H.; Himi, T.; Kawachi, E.; Shudo, K. Retinobenzoic
acids. 4. Conformation of aromatic amides with retinoidal
activity. Importance of trans-amide structure for the activity.
J. Med. Chem. 1989, 32, 2292-2296.
(20) Osterod, F.; Peters, L.; Kraft, A.; Sano, T.; Morrison, J. J.; Feeder,
N.; Holmes, A. B. Luminescent supramolecular assemblies based
on hydrogen-bonded complexes of stilbenecarboxylic acids and
dithieno[3,2-b:2′,3′-d]thiophene-2-carboxylic acids with a tris-
(imidazoline) base. J. Mater. Chem. 2001, 11, 1625-1633.
(21) Dawson, M. I.; Jong, L.; Hobbs, P. D.; Xiao, D.; Feng, K.-C.; Chao,
W.-R.; Pan, C.; Fontana, J. A.; Zhang, X.-K. 4-[3-(5,6,7,8-
Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)phenyl]benzoic
acid and heterocyclic-bridged analogues are novel retinoic acid
receptor subtype and retinoid X receptor R agonists. Bioorg. Med.
Chem. Lett. 2000, 10, 1311-1313.
(22) Corey, E. J.; Noe, M. C.; Guzman-Perez, A. Catalytic enantio-
selective synthesis of (14R)-14-hydroxy-4,14-retro-retinol from
retinyl acetate. Tetrahedron Lett. 1995, 36, 4171-4174 and
references therein.
(23) Schneider, S. M.; Offterdinger, M.; Huber, H.; Grunt, T. W.
Activation of retinoic acid receptor R is sufficient for full
induction of retinoid responses in SK-BR-3 and T47D human
breast cancer cells. Cancer Res. 2000, 60, 5479-5487.
(24) Dawson, M. I.; Hobbs, P. D.; Derdzinski, K.; Chan, R. L.-S.;
Gruber, J.; Chao, W.-R.; Smith, S.; Thies, R. W.; Schiff, L. J.
Conformationally restricted retinoids. J. Med. Chem. 1984, 27,
1516-1531.
(25) Nicotera, P.; Bonfoco, E.; Bru¨ne, B. Mechanisms for nitric oxide-
induced cell death: involvement of apoptosis. Adv. Neuro-
immunol. 1995, 5, 411-420.
(26) Leker, R. R.; Shohami, E. Cerebral ischemia and traumas
different etiologies yet similar mechanisms: neuroprotective
opportunities. Brain Res. Rev. 2002, 39, 55-73.
(27) Mattson, M. P.; Duan, W.; Pedersen, W. A.; Culmsee, C.
Neurodegenerative disorders and ischemic brain diseases. Apo-
ptosis 2001, 6, 69-81.
(28) Lin, W. W.; Wang, C. W.; Chuang, D. M. Effects of depolarization
and NMDA antagonists on the survival of cerebellar granule
cells: a pivotal role for protein kinase C isoforms. J. Neurochem.
1997, 68, 2577-2586.
(29) Loo, D. T.; Rillema, J. R. Measurement of cell death. Methods
Cell Biol. 1998, 57, 251-64.
(30) Ahlemeyer, B.; Klumpp, S.; Krieglstein, J. Release of cytochrome
c into the extracellular space contributes to neuronal apoptosis
induced by staurosporine. Brain Res. 2002, 934, 107-116.
(31) Cheung, N. S.; Pascoe, C. J.; Giardina, S. F.; John, C. A.; Beart,
P. M. Micromolar L-glutamate induces extensive apoptosis in
an apoptotic-necrotic continuum of insult-dependent, excitotoxic
injury in cultured cortical neurones. Neuropharmacology 1998,
37, 1419-1429.
the experiment. An equal amount of DMSO was added to the
medium in control wells. The primary effects of the drugs were
tested in cultured cells submitted to the same protocol, in the
absence of neurotoxins.
MTT Assay. Cell survival was determined either 24 h after
staurosporine addition or 30 min after glutamate intoxication.
Yellow MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide) is converted to the blue formazan product only
by metabolically active mitochondria, and the absorbance is
proportional to the number of viable cells. MTT (0.5 mg/mL)
was added to the cultures, and the blue color was allowed to
develop for 2 h. After aspiration of the medium, 100 µL of 9:1
isopropyl alcohol/HCl was used to solubilize the blue crystals.
Samples were read at a test wavelength of 570 nm. The
absorbance data are expressed as percentages of control
groups.28
Statistics. Survival data are given as the mean ( SEM of
percent values with respect to control cells. The statistical
significance of the differences has been assessed with the
analysis of the variance (ANOVA), followed by Dunnet’s test
(GraphPad software).
Acknowledgment. This work was supported in part
by the Ministero dell’Universita` e della Ricerca Scien-
tifica e Tecnologica, Rome, Italy. We are grateful to
Professor Gian Piero Pollini for remarkable help during
the writing up of the manuscript revision.
Supporting Information Available: Results from el-
emental analysis. This material is available free of charge via
References
(1) Kaufmann, S. H.; Hengartner, M. O. Programmed cell death:
alive and well in the new millennium. Trends Cell Biol. 2001,
11, 526-534.
(2) Zhivotovsky, B.; Orrenius, S. Defects in apoptotic machinery of
cancer cells: role in drug resistance. Semin. Cancer Biol. 2000,
13, 125-134.
(3) Tolomeo, M.; Simoni, D. Drug resistance and apoptosis in cancer
treatment: Development of new apoptosis-inducing agents active
in drug resistance malignancies. Curr. Med. Chem.: Anti-Cancer
Agents 2002, 2, 387-401.
(4) Haunstetter, A.; Izumo, S. Toward antiapoptosis as a new
treatment modality. Circ. Res. 2000, 86, 371-376.
(5) Friedlander, R. M. Apoptosis and caspases in neurodegenerative
diseases. N. Engl. J. Med. 2003, 348, 1365-75.
(6) Retinoids: The Biochemical and Molecular Basis of Vitamin A
and Retinoid Action; Nau, H., Blaner, W. S., Eds.; Springer:
Berlin, 1999 and references therein.
(7) Buck, J.; Derguini, F.; Levi, E.; Nakanishi, K.; Hammerling, U.
Intracellular signaling by 14-hydroxy-4,14-retro-retinol. Science
1991, 254, 1654-1656.
(8) Derguini, F.; Nakanishi, K.; Hammerling, U.; Buck, J. Intracel-
lular signaling activity of synthetic (14R)-, (14S)-, and (14RS)-
14-hydroxy-4,14-retro-retinol. Biochemistry 1994, 33, 623-628.
(9) Chen, Y.; Buck, J.; Derguini, F. Anhydroretinol induces oxidative
stress and cell death. Cancer Res. 1999, 59, 3985-3990.
(10) Vakiani, E.; Buck, J. Handbook of Experimental Pharmacology;
Springer: New York, 1999; pp 97-115.
(11) O’Connell, M. J.; Chua, R.; Hoyos, B.; Buck, J.; Chen, Y.;
Derguini, F. Retro-retinoids in regulated cell growth and death.
J. Exp. Med. 1996, 184, 549-555.
(12) Derguini, F.; Nakanishi, K.; Hammerling, U.; Chua, R.; Ep-
pinger, T.; Levi, E.; Buck, J. 13,14-Dihydroxy-retinol, a new
bioactive retinol metabolite. J. Biol. Chem. 1995, 270, 18875-
18880.
(13) Simoni, D.; Roberti, M.; Invidiata, F. P.; Rondanin, R.; Baruch-
ello, R.; Malagutti, C.; Mazzali, A.; Rossi, M.; Grimaudo, S.;
Dusonchet, L.; Meli, M.; Raimondi, M. V.; D’Alessandro, N.;
Tolomeo, M. Programmed cell death (PCD)-associated with the
stilbene motif of arotinoids: Discovery of novel apoptosis inducer
agents possessing activity on multidrug resistant tumor cells.
Bioorg. Med. Chem. Lett. 2000, 10, 2669-2673.
(14) Simoni, D.; Roberti, R.; Invidiata, F. P.; Rondanin, R.; Baruchello,
R.; Malagutti, C.; Mazzali, A.; Rossi, M.; Grimaudo, S.; Capone,
F.; Dusonchet, L.; Meli, M.; Landino, M.; D’Alessandro, N.;
Tolomeo, M.; Arindam, D.; Lu, S.; Benbrook, D. M. Heterocycle-
containing retinoids. Discovery of a novel isoxazole arotinoid
possessing potent apoptotic activity in multidrug and drug-
induced apoptosis resistant cells. J. Med. Chem. 2001, 44, 2308-
2318.
(32) Gwag, B. J.; Canzoniero, L. M. T.; Sensi, S. L.; Demaro, J. A.;
Koh, J. Y.; Goldberg, M. P.; Jacquin, M.; Choi, D. W. Calcium
ionophores can induce either apoptosis or necrosis in cultured
cortical neurons. Neuroscience 1999, 90, 1339-1348.
(33) Ankarcrona, M. Glutamate induced cell death: apoptosis or
necrosis? Prog. Brain Res. 1998, 116, 265-272.
(34) Lobner, D. Comparison of the LDH and MTT assays for
quantifying cell death: validity for neuronal apoptosis? J.
Neurosci. Methods 2000, 96, 147-152.
(35) Larget, R.; Lockhart, B.; Pfeiffer, B.; Neudorffer, A.; Fleury, M.-
B.; Largeron, M. Synthesis of novel orthoalkylaminophenol
derivatives as potent neuroprotective agents in vitro. Bioorg.
Med. Chem. Lett. 1999, 9, 2929-2934.
(36) Brown, J. W.; Butcher, J. L.; Byron, D. J.; Gunn, E. S.; Rees,
M.; Wilson, R. C. Comparison of the properties of liquid crystals
derived from certain lateral halogeno-substituted azomethines.
Mol. Cryst. Liq. Cryst. 1988, 159, 255-266.
(37) Capitosti, G. J.; Guerrero, C. D.; Binkley, D. E., Jr.; Rajesh, C.
S.; Modarelli, D. A. Efficient synthesis of porphyrin-containing
benzoquinone-terminated, rigid polyphenylene dendrimers. J.
Org. Chem. 2003, 68, 247-261.
(38) van Heerden, P. S.; Bezuidenhoudt, B. C. B.; Ferreira, D.
Improved synthesis for the rodenticides, diphenacoum and
brodifacoum. J. Chem. Soc., Perkin Trans. 1 1997, 1141-1146.