E. Khan et al.
129.0 (72) [M+ ꢁ C18H15].
Acknowledgements
1
6a. Yield 59%. H NMR (300 MHz): δ = 0.8, 0.9, 0.9, 1.2–1.4, 2.1,
Financial support from Higher Education Commission (HEC)
Pakistan under National Research Program for Universities (NRPU)
no. 20-1488/R&D/09-5432 is gratefully acknowledged. EK and BW
are also grateful to DAAD and Deutsche Forschungsgemeinschaft
for support.
2.2–2.4 (t, t, t, m, t, m, 31H, Bu, C4H2, C5H2), 5.7 (d, 1H, J(1H,1H)
3
= 13.8 Hz, ¼C(Si)H), 6.3 (m, 1H, C3H), 6.4 (dt, 1H, 3J(1H,1H)= 7.5,
13.8 Hz, H(Bu)C¼). 13C NMR: δ [J(29Si,13C)] =143.4 [68.9Hz] (C2),
147.2 [13.6 Hz] (C3), 32.2 (C4), 11.2 [58.7 Hz] (C5), 13.8, 20.1, 22.2,
30.6 (ꢀC–Bu), 14.3, 14.3, 22.9, 23.2, 31.0, 32.4, 32.8 [5.4 Hz], 33.7
(2× Bu), 83.0 [88.9 Hz] (Si–Cꢀ), 109.6 [17.1 Hz] (ꢀC), 125.2 [73.0 Hz]
(Si–C¼), 151.9 (¼C–Bu). 29Si NMR: δ = ꢁ21.6.
6b. Yield 55%. 1H NMR (300MHz): δ = 0.9 (m, 2H, C5H2), 2.2 (m, 2H,
C4H2), 5.8 (d, 1H, 3J(1H,1H)= 14.8 Hz, ¼CH), 6.5–7.2, 7.4, 7.6 (m, m, m,
17H, ¼CH, C3H, Ph). 13C NMR: δ [J(29Si,13C)] = 141.9 [70.6 Hz] (C2),
148.9 [13.4 Hz] (C3), 31.1 (C4), 10.1 [60.2Hz] (C5), 92.1 [88.5Hz]
(Si–Cꢀ), 108.4 [16.7Hz] (ꢀC), 139.6, 139.4 [5.6 Hz], 132.3, 129.3,
128.9, 128.7, 128.5, 128.4, 128.3, 128.2, 127.3, 123.3 (3 × Ph),
126.4 [72.9 Hz] (Si–C¼), 149.7 (¼C–Bu). 29Si NMR: δ = ꢁ18.5.
9b. Yield 56%. 1H NMR (300 MHz): δ = 0.9, 1.2 (m, m, 2H, C8H2),
2.6 (m, 2H, C7H2), 6.9–7.2, 7.4, 7.5 (m, m, m, 17H, Ph, C6H, ¼CH),
References
[1] a) Z. Rappoport, Y. Apeloig (Eds), The Chemistry of Organic Silicon Com-
pounds, Vol. 3, Wiley, Chichester, 2001; b) B. Marciniec, J. Chojnowski
(Eds), Progress in Organosilicon Chemistry, Gordon and Breach, Basel,
1995.
[2] a) N. Auner, J. Weis (Eds), Organosilicon Chemistry, Vol. VI, Wiley-
VCH, Weinheim, 2005; b) U. Schubert (Ed), Silicon Chemistry,
Springer, Belin, 1999; c) M. A. Brook, Silicon in Organic,
Organometallic and Polymer Chemistry, Wiley-VCH, Weinheim,
2000.
[3] a) B. Wrackmeyer, Coord. Chem. Rev. 1995, 145, 125–156; b)
B. Wrackmeyer, Heteroat. Chem. 2006, 17, 188–206.
[4] a) G. Dierker, J. Ugolotti, G. Kehr, R. Fröhlich, G. Erker, Adv. Synth. Catal.
2009, 351, 1080–1088; b) J. Ugolotti, G. Kehr, R. Fröhlich, G. Erker, Chem.
Commun. 2010, 46, 3016–3018.
[5] a) B. Wrackmeyer, E. Khan, R. Kempe, Appl. Organometal. Chem. 2007,
21, 39–45; b) B. Wrackmeyer, E. Khan, S. Bayer, K. Shahid, Z.
Naturforsch. 2007, 62b, 1174–1182; c) B. Wrackmeyer, H. E. Maisel,
E. Molla, A. Mottalib, A. Badshah, M. H. Bhatti, S. Ali, Appl.
Organometal. Chem. 2003, 17, 465–472; d) E. Khan, B. Wrackmeyer,
Cent. Eur. J. Chem. 2011, 9, 126–132; e) E. Khan, B. Wrackmeyer, Turk.
J. Chem. 2010, 34, 793–803; f) E. Khan, S. Bayer, B. Wrackmeyer, Z.
Naturforsch. B 2009, 64, 47–57.
[6] For studies wherein hydroboration reactions have been addressed, see
for example: a) J. A. Soderquist, J. C. Colberg, L. DelValle, J. Am. Chem.
Soc. 1989, 111, 4873–4878; b) K. Uchida, K. Utimoto, H. Nozaki, J. Org.
Chem. 1976, 41, 2941–2942; c) K. Uchida, K. Utimoto, H. Nozaki,
Tetrahedron 1977, 33, 2987–2992; d) G. Zweifel, S. J. Backlund, J. Am.
Chem. Soc. 1977, 99, 3184–3185; e) M. Hoshi, Y. Masuda, A. Arase,
Bull. Chem. Soc. Jpn. 1993, 66, 914–919; f) S. Rajogopalan, G. Zweifel,
Synthesis 1984, 113–115; g) J. A. Miller, G. Zweifel, Synthesis 1981,
288–289; h) J. A. Miller, G. Zweifel, J. Am. Chem. Soc. 1981, 103, 6217–
6219; i) J. A. Soderquist, G. Leon, Tetrahedron Lett. 1998, 39, 3989–
3990; j) D. A. Singleton, J. P. Martinez, Tetrahedron Lett. 1991, 32,
7365–7368; k) B. Wrackmeyer, A. Badshah, E. Molla, A. Mottalib,
J. Organometal. Chem. 1999, 584, 98–102; l) B. Wrackmeyer, K. Shahid,
S. Ali, Appl. Organometal. Chem. 2005, 19, 377–382; m)
B. Wrackmeyer, W. Milius, M. H. Bhatti, S. Ali, J. Organometal. Chem.
2003, 669, 72–78; n) B. Wrackmeyer, E. Khan, R. Kempe, Z.
3
7.8 (s, 1H, J(29Si,1H)= 20.1Hz, C2H). 13C NMR: δ [J(29Si,13C)] = 141.6
[59.9] (C1), 153.0 [4.7] (C2), 157.9 [53.4] (C3), 145.9 [51.8] (C5), 152.0
[12.3] (C6), 30.8 (C7), 7.3 [50.3] (C8), 130.8 (¼CH), 139.9, 139.3,
137.3, 129.0, 128.9, 128.9, 128.3, 127.5, 127.3, 127.2, 126.8, 126.7
(3× Ph). 29Si NMR: δ = 19.7.
Hydroboration of 5b to Afford 7b and 8b Followed by
Protodeborylation
Silane 5b (0.90 g, 2.50 mM) was dissolved in toluene (5ml) and an
equimolar amount of 9-BBN (0.305g, 2.50 mM) was added. The
mixture was heated to 80–100°C for 30 min. The progress of the
reaction was monitored using 29Si NMR spectroscopy, showing
the formation of 7b, and heating was continued for further 1–2 h.
During this time intramolecular 1,1-carboboration took place to
give 8b. This product was subjected to protodeborylation under
the aforementioned conditions and 9b was obtained (see above).
7b. 1H NMR (400MHz): δ = 1.2, 1.4 (m, m, 2H, C5H2), 2.5, 2.6 (m, m,
2H, C4H2), 1.2, 1.7–2.0 (m, 14H, 9-BBN), 6.8, 7.0, 7.1, 7.3, 7.5 (m, m, m,
m, m, 15H, Ph), 8.1 (s, 1H, J(29Si,1H) = 17.8 Hz, ¼CH). 13C NMR: δ
3
[J(29Si,13C)] = 142.8 [69.5 Hz] (C2), 148.1 [13.1 Hz] (C3), 31.4 (C4), 12.4
[57.7Hz] (C5), 23.6, 32.9-br, 34.3, 35.0 (9-BBN), 93.4 [86.8 Hz]
(Si–Cꢀ), 108.4 [16.1 Hz] (Cꢀ), 123.7, 126.9, 127.5, 128.0, 128.3,
128.6, 128.6, 128.6, 129.7, 132.2, 139.5, 140.5 (3 × Ph), 148.0-br
(B–C¼), 155.3 (¼C). 29Si NMR: δ = ꢁ17.9. 11B NMR: δ = 84.8.
Naturforsch.
B 2007, 62, 75–81; o) B. Wrackmeyer, E. Khan,
W. Milius, Z. Naturforsch. B 2008, 63, 1267–1275.
[7] a) B. Wrackmeyer, O. L. Tok, R. Kempe, Inorg. Chim. Acta 2005, 358,
4183–4190; b) B. Wrackmeyer, O. L. Tok, W. Milius, A. Khan,
A. Badshah, Appl. Organometal. Chem. 2006, 20, 99–105.
1
8b. Yield 89%. H NMR (300 MHz): δ = 1.4, 1.7–2.2 (m, m, 14H,
[8] a) E. Khan, R. Kempe, B. Wrackmeyer, Appl. Organometal. Chem. 2009,
23, 124–131; b) E. Khan, O. L. Tok, B. Wrackmeyer, Appl. Organometal.
Chem. 2014, 28, 280–285; c) E. Khan, B. Wrackmeyer, Cent. Eur. J.
Chem. 2012, 10, 1633–1639.
BBN), 1.2 (m, 2H, CH2), 2.6 (m, 2H, CH2), 6.9–7.2, 7.4, 7.6 (m, m,
m, arylic protons, ¼CH). 13C NMR: δ [J(29Si,13C)] =157.9 [53.4]
(C1), 153.0-br (C2), 145.9 [51.9] (C3), 141.6 [60.4] (C5), 152.0
[13.3]-br (C6), 30.9 (C7), 7.4 [49.9] (C8), 139.8, 139.3 [5.7], 137.3,
130.8, 129.0, 129.0, 128.9, 128.6, 128.3, 127.5, 127.3, 127.2, 126.7
(3× Ph and ¼CH). 29Si NMR: δ = 16.8. 11B NMR: δ = 85.7.
[9] a) R. West, J. Am. Chem. Soc. 1954, 76, 6012–6014; b) I. S. Toulokhonova,
D. R. Friedrichsen, N. J. Hill, T. Müller, R. West, Angew. Chem. Int. Ed.
2006, 45, 2578–2581; c Angew. Chem. 2006, 118, 2640–2643; d)
W. J. Richter, Synthesis 1982, 1102–1102; e) R. G. Salomon, J. Org.
Chem. 1974, 39, 3602–3602; f) V. Dejean, H. Gornitzka, G. Oba,
M. Koenig, G. Manuel, Organometallics 2000, 19, 711–713; g)
K. Tamao, K. Nakamura, H. Ishii, S. Yamaguchi, M. Shiro, J. Am. Chem.
Soc. 1996, 118, 12469–12470; h) D. Terunuma, S. Hatta, T. Araki,
T. Ueki, T. Okazaki, Y. Suzuki, Bull. Chem. Soc. Jpn. 1977, 50, 1545–
1548; i) Y. T. Park, S. Q. Zhou, G. Manuel, W. P. Weber, Macromolecules
1991, 24, 3221–3226; j) D. Yan, J. Mohsseni-Ala, N. Auner, M. Bolte,
J. W. Bats, Chem. Eur. J. 2007, 13, 7204–7214; k) Y. Kuninobu,
K. Yamauchi, N. Tamura, T. Seiki, K. Takai, Angew. Chem. Int. Ed. 2013,
52, 1520–1522.
X-ray Structure Determination
Details pertinent to the crystal structure determinations are listed
in Table 1. Crystals of suitable dimensions were selected (in
perfluorinated oil[30] at room temperature), and the data collec-
tions were carried out at 133(2) K (1c, 2b) using a STOE IPDS
II system equipped with an Oxford Cryostream low-temperature
unit. Structure solutions and refinements were accomplished
using SIR97,[31] SHELXL-97[32] and WinGX.[33]
[10] B. Wrackmeyer, E. Khan, R. Kempe, Appl. Organometal. Chem. 2008, 22,
383–388.
wileyonlinelibrary.com/journal/aoc
Copyright © 2015 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2015, 29, 384–391