1834
N. I. Bowers et al. / Tetrahedron: Asymmetry 9 (1998) 1831–1834
enes 12, 14, 16 and 18 or triene 7. Similarly when triene 10 was used as substrate only cis-dihydroxylation
was observed. Low yields (<5%) of both allylic hydroxylation and alkene cis-dihydroxylation products
were recorded with cyclohexene substrates using the TDO system.7,11 Preliminary biotransformation
data, obtained using acyclic diene substrates (methyl and ethyl substituted butadienes), has confirmed
1
that dioxygenase-catalysed dihydroxylation also occurs in acyclic polyene substrates. H-NMR and
GC–MS analyses indicate that the TDO system catalyses dihydroxylation in a regioselective manner,
e.g. monosubstituted alkenes being preferred over trisubstituted alkenes and trans-disubstituted being
the least attractive type of alkene substrate. The volatility of the butadiene substrates resulted in lower
isolated yields.
In summary, the present findings, allied to the recent report of the formation of cis-diol 11 of
unspecified enantiopurity and absolute configuration from the biotransformation of triene 10 using
isopropylbenzene 2,3-dioxygenase,12 suggest that dioxygenase enzymes of different types can catalyse
the cis-dihydroxylation of cyclic as well as acyclic polyene substrates. The biotransformation route to
cis-diol derivatives of polyenes offers, in terms of stereoselectivity and regioselectivity, advantages over
currently available catalytic asymmetric osmylation methods. The availability of enantiopure cis-diol
bioproducts 4, 8, 11, 15, 17 and 19 in a single enzyme-catalysed step now allows their potential as chiral
precursors in synthesis to be explored and synthetic studies to this end are currently in progress in our
laboratories.
We thank BBSRC (NDS), DENI (NIB), ESF (MAK), and the TDP (NIB) for support of this
programme, Professor R. A. More O’Ferrall (University College Dublin) for stability studies on the
cis-diol 4 and Professor D. T. Gibson (University of Iowa) for provision of the 9816/11 strain of P.
putida.
References
1. (a) Carless, H. A. J. Tetrahedron: Asymmetry 1992, 3, 795. (b) Sheldrake, G. N. In Chirality in Industry: The Commercial
Manufacture and Applications of Optically Active Compounds; Eds, Collins, A. N.; Crosby, J.; John Wiley & Sons:
Chichester, 1992, Chapter 6. (c) Brown, S. M.; Hudlicky, T. In Organic Synthesis: Theory and Applications; JAI Press
Inc.: Greenwich, CT, 1993, 113. (d) Hudlicky, T.; Thorpe, A. J. J. Chem. Soc., Chem. Commun. 1996, 1993.
2. Jeffrey, A. M.; Yeh, H. J. C.; Jerina, D. M.; Patel, T. R.; Davey, J. F.; Gibson, D. T. Biochemistry 1975, 14, 575.
3. Boyd, D. R.; McMordie, R. A. S.; Porter, H. P.; Dalton, H.; Jenkins, R. O.; Howarth, O. W. J. Chem. Soc., Chem. Commun.
1987, 1722.
4. Allen, C. C. R.; Boyd, D. R.; Larkin, M. J.; Reid, K. A.; Sharma, N. D.; Wilson, K. Appl. Environ. Microbiol. 1997, 63,
151.
5. Resnick, S. M.; Lee, K.; Gibson, D. T. J. Ind. Microbiol. 1996, 17, 438.
6. Boyd, D. R.; Sheldrake, G. N. Nat. Prod. Rep. 1998, 15, 309.
7. Ziffer, H.; Gibson, D. T. Tetrahedron Lett. 1975, 25, 2137.
8. Boyd, D. R.; Dorrity, M. R. J.; Malone, J. F.; McMordie, R. A. S.; Sharma, N. D.; Dalton, H.; Williams, P. J. Chem. Soc.,
Perkin Trans. 1 1990, 489.
9. Resnick, S. M.; Torok, D. S.; Gibson, D. T. J. Org. Chem. 1995, 60, 3546.
10. Wang, Z. M.; Kakiuchi, K.; Sharpless, K. B. J. Org. Chem. 1994, 59, 6895.
11. Allen, C. C. R.; Dalton, H.; Jones, S. E., unpublished data.
12. Eaton, R. W.; Selifonov, S. A. Appl. Environ. Microbiol. 1996, 62, 756.